Metamath Proof Explorer


Theorem ralsn

Description: Convert a universal quantification restricted to a singleton to a substitution. (Contributed by NM, 27-Apr-2009)

Ref Expression
Hypotheses ralsn.1 AV
ralsn.2 x=Aφψ
Assertion ralsn xAφψ

Proof

Step Hyp Ref Expression
1 ralsn.1 AV
2 ralsn.2 x=Aφψ
3 2 ralsng AVxAφψ
4 1 3 ax-mp xAφψ