Metamath Proof Explorer


Theorem setc1oterm

Description: The category ( SetCat1o ) , i.e., thetrivial category, is terminal. (Contributed by Zhi Wang, 18-Oct-2025)

Ref Expression
Assertion setc1oterm Could not format assertion : No typesetting found for |- ( SetCat ` 1o ) e. TermCat with typecode |-

Proof

Step Hyp Ref Expression
1 df1o2 1 𝑜 =
2 vsn V =
3 2 sneqi V =
4 1 3 eqtr4i 1 𝑜 = V
5 4 fveq2i SetCat 1 𝑜 = SetCat V
6 setcsnterm Could not format ( SetCat ` { { _V } } ) e. TermCat : No typesetting found for |- ( SetCat ` { { _V } } ) e. TermCat with typecode |-
7 5 6 eqeltri Could not format ( SetCat ` 1o ) e. TermCat : No typesetting found for |- ( SetCat ` 1o ) e. TermCat with typecode |-