Metamath Proof Explorer


Theorem setc1oterm

Description: The category ( SetCat1o ) , i.e., thetrivial category, is terminal. (Contributed by Zhi Wang, 18-Oct-2025)

Ref Expression
Assertion setc1oterm
|- ( SetCat ` 1o ) e. TermCat

Proof

Step Hyp Ref Expression
1 df1o2
 |-  1o = { (/) }
2 vsn
 |-  { _V } = (/)
3 2 sneqi
 |-  { { _V } } = { (/) }
4 1 3 eqtr4i
 |-  1o = { { _V } }
5 4 fveq2i
 |-  ( SetCat ` 1o ) = ( SetCat ` { { _V } } )
6 setcsnterm
 |-  ( SetCat ` { { _V } } ) e. TermCat
7 5 6 eqeltri
 |-  ( SetCat ` 1o ) e. TermCat