Metamath Proof Explorer


Theorem setcsnterm

Description: The category of one set, either a singleton set or an empty set, is terminal. (Contributed by Zhi Wang, 18-Oct-2025)

Ref Expression
Assertion setcsnterm
|- ( SetCat ` { { A } } ) e. TermCat

Proof

Step Hyp Ref Expression
1 eqidd
 |-  ( T. -> ( SetCat ` { { A } } ) = ( SetCat ` { { A } } ) )
2 snex
 |-  { { A } } e. _V
3 2 a1i
 |-  ( T. -> { { A } } e. _V )
4 velsn
 |-  ( x e. { { A } } <-> x = { A } )
5 mosn
 |-  ( x = { A } -> E* p p e. x )
6 4 5 sylbi
 |-  ( x e. { { A } } -> E* p p e. x )
7 6 rgen
 |-  A. x e. { { A } } E* p p e. x
8 7 a1i
 |-  ( T. -> A. x e. { { A } } E* p p e. x )
9 1 3 8 setcthin
 |-  ( T. -> ( SetCat ` { { A } } ) e. ThinCat )
10 9 mptru
 |-  ( SetCat ` { { A } } ) e. ThinCat
11 snex
 |-  { A } e. _V
12 11 ensn1
 |-  { { A } } ~~ 1o
13 eqid
 |-  ( SetCat ` { { A } } ) = ( SetCat ` { { A } } )
14 13 3 setcbas
 |-  ( T. -> { { A } } = ( Base ` ( SetCat ` { { A } } ) ) )
15 14 mptru
 |-  { { A } } = ( Base ` ( SetCat ` { { A } } ) )
16 15 istermc3
 |-  ( ( SetCat ` { { A } } ) e. TermCat <-> ( ( SetCat ` { { A } } ) e. ThinCat /\ { { A } } ~~ 1o ) )
17 10 12 16 mpbir2an
 |-  ( SetCat ` { { A } } ) e. TermCat