Metamath Proof Explorer


Theorem catbas

Description: The base of the category structure. (Contributed by Zhi Wang, 5-Nov-2025)

Ref Expression
Hypotheses catbas.c C = Base ndx B Hom ndx H comp ndx · ˙
catbas.b B V
Assertion catbas B = Base C

Proof

Step Hyp Ref Expression
1 catbas.c C = Base ndx B Hom ndx H comp ndx · ˙
2 catbas.b B V
3 catstr Base ndx B Hom ndx H comp ndx · ˙ Struct 1 15
4 1 3 eqbrtri C Struct 1 15
5 baseid Base = Slot Base ndx
6 snsstp1 Base ndx B Base ndx B Hom ndx H comp ndx · ˙
7 6 1 sseqtrri Base ndx B C
8 4 5 7 strfv B V B = Base C
9 2 8 ax-mp B = Base C