Metamath Proof Explorer


Theorem cathomfval

Description: The hom-sets of the category structure. (Contributed by Zhi Wang, 5-Nov-2025)

Ref Expression
Hypotheses catbas.c C = Base ndx B Hom ndx H comp ndx · ˙
cathomfval.h H V
Assertion cathomfval H = Hom C

Proof

Step Hyp Ref Expression
1 catbas.c C = Base ndx B Hom ndx H comp ndx · ˙
2 cathomfval.h H V
3 catstr Base ndx B Hom ndx H comp ndx · ˙ Struct 1 15
4 1 3 eqbrtri C Struct 1 15
5 homid Hom = Slot Hom ndx
6 snsstp2 Hom ndx H Base ndx B Hom ndx H comp ndx · ˙
7 6 1 sseqtrri Hom ndx H C
8 4 5 7 strfv H V H = Hom C
9 2 8 ax-mp H = Hom C