Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Natural transformations and the functor category
cathomfval
Next ⟩
catcofval
Metamath Proof Explorer
Ascii
Unicode
Theorem
cathomfval
Description:
The hom-sets of the category structure.
(Contributed by
Zhi Wang
, 5-Nov-2025)
Ref
Expression
Hypotheses
catbas.c
⊢
C
=
Base
ndx
B
Hom
⁡
ndx
H
comp
⁡
ndx
·
˙
cathomfval.h
⊢
H
∈
V
Assertion
cathomfval
⊢
H
=
Hom
⁡
C
Proof
Step
Hyp
Ref
Expression
1
catbas.c
⊢
C
=
Base
ndx
B
Hom
⁡
ndx
H
comp
⁡
ndx
·
˙
2
cathomfval.h
⊢
H
∈
V
3
catstr
⊢
Base
ndx
B
Hom
⁡
ndx
H
comp
⁡
ndx
·
˙
Struct
1
15
4
1
3
eqbrtri
⊢
C
Struct
1
15
5
homid
⊢
Hom
=
Slot
Hom
⁡
ndx
6
snsstp2
⊢
Hom
⁡
ndx
H
⊆
Base
ndx
B
Hom
⁡
ndx
H
comp
⁡
ndx
·
˙
7
6
1
sseqtrri
⊢
Hom
⁡
ndx
H
⊆
C
8
4
5
7
strfv
⊢
H
∈
V
→
H
=
Hom
⁡
C
9
2
8
ax-mp
⊢
H
=
Hom
⁡
C