Metamath Proof Explorer


Theorem cathomfval

Description: The hom-sets of the category structure. (Contributed by Zhi Wang, 5-Nov-2025)

Ref Expression
Hypotheses catbas.c 𝐶 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ , ⟨ ( comp ‘ ndx ) , · ⟩ }
cathomfval.h 𝐻 ∈ V
Assertion cathomfval 𝐻 = ( Hom ‘ 𝐶 )

Proof

Step Hyp Ref Expression
1 catbas.c 𝐶 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ , ⟨ ( comp ‘ ndx ) , · ⟩ }
2 cathomfval.h 𝐻 ∈ V
3 catstr { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ , ⟨ ( comp ‘ ndx ) , · ⟩ } Struct ⟨ 1 , 1 5 ⟩
4 1 3 eqbrtri 𝐶 Struct ⟨ 1 , 1 5 ⟩
5 homid Hom = Slot ( Hom ‘ ndx )
6 snsstp2 { ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ , ⟨ ( comp ‘ ndx ) , · ⟩ }
7 6 1 sseqtrri { ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ } ⊆ 𝐶
8 4 5 7 strfv ( 𝐻 ∈ V → 𝐻 = ( Hom ‘ 𝐶 ) )
9 2 8 ax-mp 𝐻 = ( Hom ‘ 𝐶 )