Metamath Proof Explorer


Theorem setc1ohomfval

Description: Set of morphisms of the trivial category. (Contributed by Zhi Wang, 22-Oct-2025)

Ref Expression
Hypothesis funcsetc1o.1 1 ˙ = SetCat 1 𝑜
Assertion setc1ohomfval 1 𝑜 = Hom 1 ˙

Proof

Step Hyp Ref Expression
1 funcsetc1o.1 1 ˙ = SetCat 1 𝑜
2 df-ot 1 𝑜 = 1 𝑜
3 2 sneqi 1 𝑜 = 1 𝑜
4 0ex V
5 1oex 1 𝑜 V
6 df1o2 1 𝑜 =
7 6 fveq2i SetCat 1 𝑜 = SetCat
8 1 7 eqtri 1 ˙ = SetCat
9 p0ex V
10 9 a1i V
11 eqid Hom 1 ˙ = Hom 1 ˙
12 8 10 11 setchomfval Hom 1 ˙ = x , y y x
13 12 mptru Hom 1 ˙ = x , y y x
14 oveq2 x = y x = y
15 oveq1 y = y =
16 0map0sn0 =
17 16 6 eqtr4i = 1 𝑜
18 15 17 eqtrdi y = y = 1 𝑜
19 13 14 18 mposn V V 1 𝑜 V Hom 1 ˙ = 1 𝑜
20 4 4 5 19 mp3an Hom 1 ˙ = 1 𝑜
21 3 20 eqtr4i 1 𝑜 = Hom 1 ˙