Metamath Proof Explorer


Theorem setc1ohomfval

Description: Set of morphisms of the trivial category. (Contributed by Zhi Wang, 22-Oct-2025)

Ref Expression
Hypothesis funcsetc1o.1
|- .1. = ( SetCat ` 1o )
Assertion setc1ohomfval
|- { <. (/) , (/) , 1o >. } = ( Hom ` .1. )

Proof

Step Hyp Ref Expression
1 funcsetc1o.1
 |-  .1. = ( SetCat ` 1o )
2 df-ot
 |-  <. (/) , (/) , 1o >. = <. <. (/) , (/) >. , 1o >.
3 2 sneqi
 |-  { <. (/) , (/) , 1o >. } = { <. <. (/) , (/) >. , 1o >. }
4 0ex
 |-  (/) e. _V
5 1oex
 |-  1o e. _V
6 df1o2
 |-  1o = { (/) }
7 6 fveq2i
 |-  ( SetCat ` 1o ) = ( SetCat ` { (/) } )
8 1 7 eqtri
 |-  .1. = ( SetCat ` { (/) } )
9 p0ex
 |-  { (/) } e. _V
10 9 a1i
 |-  ( T. -> { (/) } e. _V )
11 eqid
 |-  ( Hom ` .1. ) = ( Hom ` .1. )
12 8 10 11 setchomfval
 |-  ( T. -> ( Hom ` .1. ) = ( x e. { (/) } , y e. { (/) } |-> ( y ^m x ) ) )
13 12 mptru
 |-  ( Hom ` .1. ) = ( x e. { (/) } , y e. { (/) } |-> ( y ^m x ) )
14 oveq2
 |-  ( x = (/) -> ( y ^m x ) = ( y ^m (/) ) )
15 oveq1
 |-  ( y = (/) -> ( y ^m (/) ) = ( (/) ^m (/) ) )
16 0map0sn0
 |-  ( (/) ^m (/) ) = { (/) }
17 16 6 eqtr4i
 |-  ( (/) ^m (/) ) = 1o
18 15 17 eqtrdi
 |-  ( y = (/) -> ( y ^m (/) ) = 1o )
19 13 14 18 mposn
 |-  ( ( (/) e. _V /\ (/) e. _V /\ 1o e. _V ) -> ( Hom ` .1. ) = { <. <. (/) , (/) >. , 1o >. } )
20 4 4 5 19 mp3an
 |-  ( Hom ` .1. ) = { <. <. (/) , (/) >. , 1o >. }
21 3 20 eqtr4i
 |-  { <. (/) , (/) , 1o >. } = ( Hom ` .1. )