| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mposn.f |  |-  F = ( x e. { A } , y e. { B } |-> C ) | 
						
							| 2 |  | mposn.a |  |-  ( x = A -> C = D ) | 
						
							| 3 |  | mposn.b |  |-  ( y = B -> D = E ) | 
						
							| 4 |  | xpsng |  |-  ( ( A e. V /\ B e. W ) -> ( { A } X. { B } ) = { <. A , B >. } ) | 
						
							| 5 | 4 | 3adant3 |  |-  ( ( A e. V /\ B e. W /\ E e. U ) -> ( { A } X. { B } ) = { <. A , B >. } ) | 
						
							| 6 | 5 | mpteq1d |  |-  ( ( A e. V /\ B e. W /\ E e. U ) -> ( p e. ( { A } X. { B } ) |-> [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C ) = ( p e. { <. A , B >. } |-> [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C ) ) | 
						
							| 7 |  | mpompts |  |-  ( x e. { A } , y e. { B } |-> C ) = ( p e. ( { A } X. { B } ) |-> [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C ) | 
						
							| 8 | 1 7 | eqtri |  |-  F = ( p e. ( { A } X. { B } ) |-> [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C ) | 
						
							| 9 | 8 | a1i |  |-  ( ( A e. V /\ B e. W /\ E e. U ) -> F = ( p e. ( { A } X. { B } ) |-> [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C ) ) | 
						
							| 10 |  | op2ndg |  |-  ( ( A e. V /\ B e. W ) -> ( 2nd ` <. A , B >. ) = B ) | 
						
							| 11 |  | fveq2 |  |-  ( p = <. A , B >. -> ( 2nd ` p ) = ( 2nd ` <. A , B >. ) ) | 
						
							| 12 | 11 | eqcomd |  |-  ( p = <. A , B >. -> ( 2nd ` <. A , B >. ) = ( 2nd ` p ) ) | 
						
							| 13 | 12 | eqeq1d |  |-  ( p = <. A , B >. -> ( ( 2nd ` <. A , B >. ) = B <-> ( 2nd ` p ) = B ) ) | 
						
							| 14 | 10 13 | syl5ibcom |  |-  ( ( A e. V /\ B e. W ) -> ( p = <. A , B >. -> ( 2nd ` p ) = B ) ) | 
						
							| 15 | 14 | 3adant3 |  |-  ( ( A e. V /\ B e. W /\ E e. U ) -> ( p = <. A , B >. -> ( 2nd ` p ) = B ) ) | 
						
							| 16 | 15 | imp |  |-  ( ( ( A e. V /\ B e. W /\ E e. U ) /\ p = <. A , B >. ) -> ( 2nd ` p ) = B ) | 
						
							| 17 |  | op1stg |  |-  ( ( A e. V /\ B e. W ) -> ( 1st ` <. A , B >. ) = A ) | 
						
							| 18 |  | fveq2 |  |-  ( p = <. A , B >. -> ( 1st ` p ) = ( 1st ` <. A , B >. ) ) | 
						
							| 19 | 18 | eqcomd |  |-  ( p = <. A , B >. -> ( 1st ` <. A , B >. ) = ( 1st ` p ) ) | 
						
							| 20 | 19 | eqeq1d |  |-  ( p = <. A , B >. -> ( ( 1st ` <. A , B >. ) = A <-> ( 1st ` p ) = A ) ) | 
						
							| 21 | 17 20 | syl5ibcom |  |-  ( ( A e. V /\ B e. W ) -> ( p = <. A , B >. -> ( 1st ` p ) = A ) ) | 
						
							| 22 | 21 | 3adant3 |  |-  ( ( A e. V /\ B e. W /\ E e. U ) -> ( p = <. A , B >. -> ( 1st ` p ) = A ) ) | 
						
							| 23 | 22 | imp |  |-  ( ( ( A e. V /\ B e. W /\ E e. U ) /\ p = <. A , B >. ) -> ( 1st ` p ) = A ) | 
						
							| 24 |  | simp1 |  |-  ( ( A e. V /\ B e. W /\ E e. U ) -> A e. V ) | 
						
							| 25 |  | simpl2 |  |-  ( ( ( A e. V /\ B e. W /\ E e. U ) /\ x = A ) -> B e. W ) | 
						
							| 26 | 2 | adantl |  |-  ( ( ( A e. V /\ B e. W /\ E e. U ) /\ x = A ) -> C = D ) | 
						
							| 27 | 26 3 | sylan9eq |  |-  ( ( ( ( A e. V /\ B e. W /\ E e. U ) /\ x = A ) /\ y = B ) -> C = E ) | 
						
							| 28 | 25 27 | csbied |  |-  ( ( ( A e. V /\ B e. W /\ E e. U ) /\ x = A ) -> [_ B / y ]_ C = E ) | 
						
							| 29 | 24 28 | csbied |  |-  ( ( A e. V /\ B e. W /\ E e. U ) -> [_ A / x ]_ [_ B / y ]_ C = E ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ( A e. V /\ B e. W /\ E e. U ) /\ p = <. A , B >. ) -> [_ A / x ]_ [_ B / y ]_ C = E ) | 
						
							| 31 |  | csbeq1 |  |-  ( ( 1st ` p ) = A -> [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C = [_ A / x ]_ [_ ( 2nd ` p ) / y ]_ C ) | 
						
							| 32 | 31 | eqeq1d |  |-  ( ( 1st ` p ) = A -> ( [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C = E <-> [_ A / x ]_ [_ ( 2nd ` p ) / y ]_ C = E ) ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ( 2nd ` p ) = B /\ ( 1st ` p ) = A ) -> ( [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C = E <-> [_ A / x ]_ [_ ( 2nd ` p ) / y ]_ C = E ) ) | 
						
							| 34 |  | csbeq1 |  |-  ( ( 2nd ` p ) = B -> [_ ( 2nd ` p ) / y ]_ C = [_ B / y ]_ C ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( 2nd ` p ) = B /\ ( 1st ` p ) = A ) -> [_ ( 2nd ` p ) / y ]_ C = [_ B / y ]_ C ) | 
						
							| 36 | 35 | csbeq2dv |  |-  ( ( ( 2nd ` p ) = B /\ ( 1st ` p ) = A ) -> [_ A / x ]_ [_ ( 2nd ` p ) / y ]_ C = [_ A / x ]_ [_ B / y ]_ C ) | 
						
							| 37 | 36 | eqeq1d |  |-  ( ( ( 2nd ` p ) = B /\ ( 1st ` p ) = A ) -> ( [_ A / x ]_ [_ ( 2nd ` p ) / y ]_ C = E <-> [_ A / x ]_ [_ B / y ]_ C = E ) ) | 
						
							| 38 | 33 37 | bitrd |  |-  ( ( ( 2nd ` p ) = B /\ ( 1st ` p ) = A ) -> ( [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C = E <-> [_ A / x ]_ [_ B / y ]_ C = E ) ) | 
						
							| 39 | 30 38 | syl5ibrcom |  |-  ( ( ( A e. V /\ B e. W /\ E e. U ) /\ p = <. A , B >. ) -> ( ( ( 2nd ` p ) = B /\ ( 1st ` p ) = A ) -> [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C = E ) ) | 
						
							| 40 | 16 23 39 | mp2and |  |-  ( ( ( A e. V /\ B e. W /\ E e. U ) /\ p = <. A , B >. ) -> [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C = E ) | 
						
							| 41 |  | opex |  |-  <. A , B >. e. _V | 
						
							| 42 | 41 | a1i |  |-  ( ( A e. V /\ B e. W /\ E e. U ) -> <. A , B >. e. _V ) | 
						
							| 43 |  | simp3 |  |-  ( ( A e. V /\ B e. W /\ E e. U ) -> E e. U ) | 
						
							| 44 | 40 42 43 | fmptsnd |  |-  ( ( A e. V /\ B e. W /\ E e. U ) -> { <. <. A , B >. , E >. } = ( p e. { <. A , B >. } |-> [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C ) ) | 
						
							| 45 | 6 9 44 | 3eqtr4d |  |-  ( ( A e. V /\ B e. W /\ E e. U ) -> F = { <. <. A , B >. , E >. } ) |