Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | mpompts | |- ( x e. A , y e. B |-> C ) = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpomptsx | |- ( x e. A , y e. B |-> C ) = ( z e. U_ x e. A ( { x } X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) |
|
2 | iunxpconst | |- U_ x e. A ( { x } X. B ) = ( A X. B ) |
|
3 | 2 | mpteq1i | |- ( z e. U_ x e. A ( { x } X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) |
4 | 1 3 | eqtri | |- ( x e. A , y e. B |-> C ) = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) |