Metamath Proof Explorer


Theorem mpompts

Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Sep-2015)

Ref Expression
Assertion mpompts xA,yBC=zA×B1stz/x2ndz/yC

Proof

Step Hyp Ref Expression
1 mpomptsx xA,yBC=zxAx×B1stz/x2ndz/yC
2 iunxpconst xAx×B=A×B
3 2 mpteq1i zxAx×B1stz/x2ndz/yC=zA×B1stz/x2ndz/yC
4 1 3 eqtri xA,yBC=zA×B1stz/x2ndz/yC