Metamath Proof Explorer


Theorem mpteq1i

Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020) Remove all disjoint variable conditions. (Revised by SN, 11-Nov-2024)

Ref Expression
Hypothesis mpteq1i.1
|- A = B
Assertion mpteq1i
|- ( x e. A |-> C ) = ( x e. B |-> C )

Proof

Step Hyp Ref Expression
1 mpteq1i.1
 |-  A = B
2 1 a1i
 |-  ( T. -> A = B )
3 eqidd
 |-  ( T. -> C = C )
4 2 3 mpteq12dv
 |-  ( T. -> ( x e. A |-> C ) = ( x e. B |-> C ) )
5 4 mptru
 |-  ( x e. A |-> C ) = ( x e. B |-> C )