Metamath Proof Explorer


Theorem mpteq1i

Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020) Remove all disjoint variable conditions. (Revised by SN, 11-Nov-2024)

Ref Expression
Hypothesis mpteq1i.1 𝐴 = 𝐵
Assertion mpteq1i ( 𝑥𝐴𝐶 ) = ( 𝑥𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 mpteq1i.1 𝐴 = 𝐵
2 1 a1i ( ⊤ → 𝐴 = 𝐵 )
3 eqidd ( ⊤ → 𝐶 = 𝐶 )
4 2 3 mpteq12dv ( ⊤ → ( 𝑥𝐴𝐶 ) = ( 𝑥𝐵𝐶 ) )
5 4 mptru ( 𝑥𝐴𝐶 ) = ( 𝑥𝐵𝐶 )