| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mposn.f |
⊢ 𝐹 = ( 𝑥 ∈ { 𝐴 } , 𝑦 ∈ { 𝐵 } ↦ 𝐶 ) |
| 2 |
|
mposn.a |
⊢ ( 𝑥 = 𝐴 → 𝐶 = 𝐷 ) |
| 3 |
|
mposn.b |
⊢ ( 𝑦 = 𝐵 → 𝐷 = 𝐸 ) |
| 4 |
|
xpsng |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( { 𝐴 } × { 𝐵 } ) = { 〈 𝐴 , 𝐵 〉 } ) |
| 5 |
4
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → ( { 𝐴 } × { 𝐵 } ) = { 〈 𝐴 , 𝐵 〉 } ) |
| 6 |
5
|
mpteq1d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → ( 𝑝 ∈ ( { 𝐴 } × { 𝐵 } ) ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 ) = ( 𝑝 ∈ { 〈 𝐴 , 𝐵 〉 } ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 ) ) |
| 7 |
|
mpompts |
⊢ ( 𝑥 ∈ { 𝐴 } , 𝑦 ∈ { 𝐵 } ↦ 𝐶 ) = ( 𝑝 ∈ ( { 𝐴 } × { 𝐵 } ) ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 ) |
| 8 |
1 7
|
eqtri |
⊢ 𝐹 = ( 𝑝 ∈ ( { 𝐴 } × { 𝐵 } ) ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 ) |
| 9 |
8
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → 𝐹 = ( 𝑝 ∈ ( { 𝐴 } × { 𝐵 } ) ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 ) ) |
| 10 |
|
op2ndg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
| 11 |
|
fveq2 |
⊢ ( 𝑝 = 〈 𝐴 , 𝐵 〉 → ( 2nd ‘ 𝑝 ) = ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 12 |
11
|
eqcomd |
⊢ ( 𝑝 = 〈 𝐴 , 𝐵 〉 → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = ( 2nd ‘ 𝑝 ) ) |
| 13 |
12
|
eqeq1d |
⊢ ( 𝑝 = 〈 𝐴 , 𝐵 〉 → ( ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ↔ ( 2nd ‘ 𝑝 ) = 𝐵 ) ) |
| 14 |
10 13
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑝 = 〈 𝐴 , 𝐵 〉 → ( 2nd ‘ 𝑝 ) = 𝐵 ) ) |
| 15 |
14
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → ( 𝑝 = 〈 𝐴 , 𝐵 〉 → ( 2nd ‘ 𝑝 ) = 𝐵 ) ) |
| 16 |
15
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) ∧ 𝑝 = 〈 𝐴 , 𝐵 〉 ) → ( 2nd ‘ 𝑝 ) = 𝐵 ) |
| 17 |
|
op1stg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
| 18 |
|
fveq2 |
⊢ ( 𝑝 = 〈 𝐴 , 𝐵 〉 → ( 1st ‘ 𝑝 ) = ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 19 |
18
|
eqcomd |
⊢ ( 𝑝 = 〈 𝐴 , 𝐵 〉 → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = ( 1st ‘ 𝑝 ) ) |
| 20 |
19
|
eqeq1d |
⊢ ( 𝑝 = 〈 𝐴 , 𝐵 〉 → ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ↔ ( 1st ‘ 𝑝 ) = 𝐴 ) ) |
| 21 |
17 20
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑝 = 〈 𝐴 , 𝐵 〉 → ( 1st ‘ 𝑝 ) = 𝐴 ) ) |
| 22 |
21
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → ( 𝑝 = 〈 𝐴 , 𝐵 〉 → ( 1st ‘ 𝑝 ) = 𝐴 ) ) |
| 23 |
22
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) ∧ 𝑝 = 〈 𝐴 , 𝐵 〉 ) → ( 1st ‘ 𝑝 ) = 𝐴 ) |
| 24 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → 𝐴 ∈ 𝑉 ) |
| 25 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝑊 ) |
| 26 |
2
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) ∧ 𝑥 = 𝐴 ) → 𝐶 = 𝐷 ) |
| 27 |
26 3
|
sylan9eq |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐸 ) |
| 28 |
25 27
|
csbied |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) ∧ 𝑥 = 𝐴 ) → ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = 𝐸 ) |
| 29 |
24 28
|
csbied |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = 𝐸 ) |
| 30 |
29
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) ∧ 𝑝 = 〈 𝐴 , 𝐵 〉 ) → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = 𝐸 ) |
| 31 |
|
csbeq1 |
⊢ ( ( 1st ‘ 𝑝 ) = 𝐴 → ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 ) |
| 32 |
31
|
eqeq1d |
⊢ ( ( 1st ‘ 𝑝 ) = 𝐴 → ( ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = 𝐸 ↔ ⦋ 𝐴 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = 𝐸 ) ) |
| 33 |
32
|
adantl |
⊢ ( ( ( 2nd ‘ 𝑝 ) = 𝐵 ∧ ( 1st ‘ 𝑝 ) = 𝐴 ) → ( ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = 𝐸 ↔ ⦋ 𝐴 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = 𝐸 ) ) |
| 34 |
|
csbeq1 |
⊢ ( ( 2nd ‘ 𝑝 ) = 𝐵 → ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝐵 / 𝑦 ⦌ 𝐶 ) |
| 35 |
34
|
adantr |
⊢ ( ( ( 2nd ‘ 𝑝 ) = 𝐵 ∧ ( 1st ‘ 𝑝 ) = 𝐴 ) → ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝐵 / 𝑦 ⦌ 𝐶 ) |
| 36 |
35
|
csbeq2dv |
⊢ ( ( ( 2nd ‘ 𝑝 ) = 𝐵 ∧ ( 1st ‘ 𝑝 ) = 𝐴 ) → ⦋ 𝐴 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 ) |
| 37 |
36
|
eqeq1d |
⊢ ( ( ( 2nd ‘ 𝑝 ) = 𝐵 ∧ ( 1st ‘ 𝑝 ) = 𝐴 ) → ( ⦋ 𝐴 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = 𝐸 ↔ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = 𝐸 ) ) |
| 38 |
33 37
|
bitrd |
⊢ ( ( ( 2nd ‘ 𝑝 ) = 𝐵 ∧ ( 1st ‘ 𝑝 ) = 𝐴 ) → ( ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = 𝐸 ↔ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = 𝐸 ) ) |
| 39 |
30 38
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) ∧ 𝑝 = 〈 𝐴 , 𝐵 〉 ) → ( ( ( 2nd ‘ 𝑝 ) = 𝐵 ∧ ( 1st ‘ 𝑝 ) = 𝐴 ) → ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = 𝐸 ) ) |
| 40 |
16 23 39
|
mp2and |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) ∧ 𝑝 = 〈 𝐴 , 𝐵 〉 ) → ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 = 𝐸 ) |
| 41 |
|
opex |
⊢ 〈 𝐴 , 𝐵 〉 ∈ V |
| 42 |
41
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → 〈 𝐴 , 𝐵 〉 ∈ V ) |
| 43 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → 𝐸 ∈ 𝑈 ) |
| 44 |
40 42 43
|
fmptsnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → { 〈 〈 𝐴 , 𝐵 〉 , 𝐸 〉 } = ( 𝑝 ∈ { 〈 𝐴 , 𝐵 〉 } ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑦 ⦌ 𝐶 ) ) |
| 45 |
6 9 44
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ 𝑈 ) → 𝐹 = { 〈 〈 𝐴 , 𝐵 〉 , 𝐸 〉 } ) |