| Step |
Hyp |
Ref |
Expression |
| 1 |
|
curry1.1 |
⊢ 𝐺 = ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) |
| 2 |
|
fnfun |
⊢ ( 𝐹 Fn ( 𝐴 × 𝐵 ) → Fun 𝐹 ) |
| 3 |
|
2ndconst |
⊢ ( 𝐶 ∈ 𝐴 → ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V ) |
| 4 |
|
dff1o3 |
⊢ ( ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V ↔ ( ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –onto→ V ∧ Fun ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) ) |
| 5 |
4
|
simprbi |
⊢ ( ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V → Fun ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) |
| 6 |
3 5
|
syl |
⊢ ( 𝐶 ∈ 𝐴 → Fun ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) |
| 7 |
|
funco |
⊢ ( ( Fun 𝐹 ∧ Fun ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) → Fun ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) ) |
| 8 |
2 6 7
|
syl2an |
⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → Fun ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) ) |
| 9 |
|
dmco |
⊢ dom ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) = ( ◡ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) “ dom 𝐹 ) |
| 10 |
|
fndm |
⊢ ( 𝐹 Fn ( 𝐴 × 𝐵 ) → dom 𝐹 = ( 𝐴 × 𝐵 ) ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → dom 𝐹 = ( 𝐴 × 𝐵 ) ) |
| 12 |
11
|
imaeq2d |
⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → ( ◡ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) “ dom 𝐹 ) = ( ◡ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) ) ) |
| 13 |
|
imacnvcnv |
⊢ ( ◡ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) ) = ( ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) ) |
| 14 |
|
df-ima |
⊢ ( ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) ) = ran ( ( 2nd ↾ ( { 𝐶 } × V ) ) ↾ ( 𝐴 × 𝐵 ) ) |
| 15 |
|
resres |
⊢ ( ( 2nd ↾ ( { 𝐶 } × V ) ) ↾ ( 𝐴 × 𝐵 ) ) = ( 2nd ↾ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) ) |
| 16 |
15
|
rneqi |
⊢ ran ( ( 2nd ↾ ( { 𝐶 } × V ) ) ↾ ( 𝐴 × 𝐵 ) ) = ran ( 2nd ↾ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) ) |
| 17 |
13 14 16
|
3eqtri |
⊢ ( ◡ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) ) = ran ( 2nd ↾ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) ) |
| 18 |
|
inxp |
⊢ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) = ( ( { 𝐶 } ∩ 𝐴 ) × ( V ∩ 𝐵 ) ) |
| 19 |
|
incom |
⊢ ( V ∩ 𝐵 ) = ( 𝐵 ∩ V ) |
| 20 |
|
inv1 |
⊢ ( 𝐵 ∩ V ) = 𝐵 |
| 21 |
19 20
|
eqtri |
⊢ ( V ∩ 𝐵 ) = 𝐵 |
| 22 |
21
|
xpeq2i |
⊢ ( ( { 𝐶 } ∩ 𝐴 ) × ( V ∩ 𝐵 ) ) = ( ( { 𝐶 } ∩ 𝐴 ) × 𝐵 ) |
| 23 |
18 22
|
eqtri |
⊢ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) = ( ( { 𝐶 } ∩ 𝐴 ) × 𝐵 ) |
| 24 |
|
snssi |
⊢ ( 𝐶 ∈ 𝐴 → { 𝐶 } ⊆ 𝐴 ) |
| 25 |
|
dfss2 |
⊢ ( { 𝐶 } ⊆ 𝐴 ↔ ( { 𝐶 } ∩ 𝐴 ) = { 𝐶 } ) |
| 26 |
24 25
|
sylib |
⊢ ( 𝐶 ∈ 𝐴 → ( { 𝐶 } ∩ 𝐴 ) = { 𝐶 } ) |
| 27 |
26
|
xpeq1d |
⊢ ( 𝐶 ∈ 𝐴 → ( ( { 𝐶 } ∩ 𝐴 ) × 𝐵 ) = ( { 𝐶 } × 𝐵 ) ) |
| 28 |
23 27
|
eqtrid |
⊢ ( 𝐶 ∈ 𝐴 → ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) = ( { 𝐶 } × 𝐵 ) ) |
| 29 |
28
|
reseq2d |
⊢ ( 𝐶 ∈ 𝐴 → ( 2nd ↾ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) ) = ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) ) |
| 30 |
29
|
rneqd |
⊢ ( 𝐶 ∈ 𝐴 → ran ( 2nd ↾ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) ) = ran ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) ) |
| 31 |
|
2ndconst |
⊢ ( 𝐶 ∈ 𝐴 → ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) : ( { 𝐶 } × 𝐵 ) –1-1-onto→ 𝐵 ) |
| 32 |
|
f1ofo |
⊢ ( ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) : ( { 𝐶 } × 𝐵 ) –1-1-onto→ 𝐵 → ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) : ( { 𝐶 } × 𝐵 ) –onto→ 𝐵 ) |
| 33 |
|
forn |
⊢ ( ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) : ( { 𝐶 } × 𝐵 ) –onto→ 𝐵 → ran ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) = 𝐵 ) |
| 34 |
31 32 33
|
3syl |
⊢ ( 𝐶 ∈ 𝐴 → ran ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) = 𝐵 ) |
| 35 |
30 34
|
eqtrd |
⊢ ( 𝐶 ∈ 𝐴 → ran ( 2nd ↾ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) ) = 𝐵 ) |
| 36 |
17 35
|
eqtrid |
⊢ ( 𝐶 ∈ 𝐴 → ( ◡ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) ) = 𝐵 ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → ( ◡ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) ) = 𝐵 ) |
| 38 |
12 37
|
eqtrd |
⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → ( ◡ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) “ dom 𝐹 ) = 𝐵 ) |
| 39 |
9 38
|
eqtrid |
⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → dom ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) = 𝐵 ) |
| 40 |
1
|
fneq1i |
⊢ ( 𝐺 Fn 𝐵 ↔ ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) Fn 𝐵 ) |
| 41 |
|
df-fn |
⊢ ( ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) Fn 𝐵 ↔ ( Fun ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) ∧ dom ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) = 𝐵 ) ) |
| 42 |
40 41
|
bitri |
⊢ ( 𝐺 Fn 𝐵 ↔ ( Fun ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) ∧ dom ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) = 𝐵 ) ) |
| 43 |
8 39 42
|
sylanbrc |
⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → 𝐺 Fn 𝐵 ) |
| 44 |
|
dffn5 |
⊢ ( 𝐺 Fn 𝐵 ↔ 𝐺 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 45 |
43 44
|
sylib |
⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → 𝐺 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 46 |
1
|
fveq1i |
⊢ ( 𝐺 ‘ 𝑥 ) = ( ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) ‘ 𝑥 ) |
| 47 |
|
dff1o4 |
⊢ ( ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V ↔ ( ( 2nd ↾ ( { 𝐶 } × V ) ) Fn ( { 𝐶 } × V ) ∧ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) Fn V ) ) |
| 48 |
3 47
|
sylib |
⊢ ( 𝐶 ∈ 𝐴 → ( ( 2nd ↾ ( { 𝐶 } × V ) ) Fn ( { 𝐶 } × V ) ∧ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) Fn V ) ) |
| 49 |
|
fvco2 |
⊢ ( ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) Fn V ∧ 𝑥 ∈ V ) → ( ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) ) |
| 50 |
49
|
elvd |
⊢ ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) Fn V → ( ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) ) |
| 51 |
48 50
|
simpl2im |
⊢ ( 𝐶 ∈ 𝐴 → ( ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) ) |
| 52 |
51
|
ad2antlr |
⊢ ( ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) ) |
| 53 |
46 52
|
eqtrid |
⊢ ( ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) ) |
| 54 |
3
|
adantr |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V ) |
| 55 |
|
snidg |
⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ { 𝐶 } ) |
| 56 |
|
vex |
⊢ 𝑥 ∈ V |
| 57 |
|
opelxp |
⊢ ( 〈 𝐶 , 𝑥 〉 ∈ ( { 𝐶 } × V ) ↔ ( 𝐶 ∈ { 𝐶 } ∧ 𝑥 ∈ V ) ) |
| 58 |
55 56 57
|
sylanblrc |
⊢ ( 𝐶 ∈ 𝐴 → 〈 𝐶 , 𝑥 〉 ∈ ( { 𝐶 } × V ) ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 〈 𝐶 , 𝑥 〉 ∈ ( { 𝐶 } × V ) ) |
| 60 |
54 59
|
jca |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V ∧ 〈 𝐶 , 𝑥 〉 ∈ ( { 𝐶 } × V ) ) ) |
| 61 |
58
|
fvresd |
⊢ ( 𝐶 ∈ 𝐴 → ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 〈 𝐶 , 𝑥 〉 ) = ( 2nd ‘ 〈 𝐶 , 𝑥 〉 ) ) |
| 62 |
|
op2ndg |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑥 ∈ V ) → ( 2nd ‘ 〈 𝐶 , 𝑥 〉 ) = 𝑥 ) |
| 63 |
62
|
elvd |
⊢ ( 𝐶 ∈ 𝐴 → ( 2nd ‘ 〈 𝐶 , 𝑥 〉 ) = 𝑥 ) |
| 64 |
61 63
|
eqtrd |
⊢ ( 𝐶 ∈ 𝐴 → ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 〈 𝐶 , 𝑥 〉 ) = 𝑥 ) |
| 65 |
64
|
adantr |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 〈 𝐶 , 𝑥 〉 ) = 𝑥 ) |
| 66 |
|
f1ocnvfv |
⊢ ( ( ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V ∧ 〈 𝐶 , 𝑥 〉 ∈ ( { 𝐶 } × V ) ) → ( ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 〈 𝐶 , 𝑥 〉 ) = 𝑥 → ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) = 〈 𝐶 , 𝑥 〉 ) ) |
| 67 |
60 65 66
|
sylc |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) = 〈 𝐶 , 𝑥 〉 ) |
| 68 |
67
|
fveq2d |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) = ( 𝐹 ‘ 〈 𝐶 , 𝑥 〉 ) ) |
| 69 |
68
|
adantll |
⊢ ( ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) = ( 𝐹 ‘ 〈 𝐶 , 𝑥 〉 ) ) |
| 70 |
|
df-ov |
⊢ ( 𝐶 𝐹 𝑥 ) = ( 𝐹 ‘ 〈 𝐶 , 𝑥 〉 ) |
| 71 |
69 70
|
eqtr4di |
⊢ ( ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) = ( 𝐶 𝐹 𝑥 ) ) |
| 72 |
53 71
|
eqtrd |
⊢ ( ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐶 𝐹 𝑥 ) ) |
| 73 |
72
|
mpteq2dva |
⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝐺 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝐶 𝐹 𝑥 ) ) ) |
| 74 |
45 73
|
eqtrd |
⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → 𝐺 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐶 𝐹 𝑥 ) ) ) |