Description: The domain of a composition. Exercise 27 of Enderton p. 53. (Contributed by NM, 4-Feb-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | dmco | ⊢ dom ( 𝐴 ∘ 𝐵 ) = ( ◡ 𝐵 “ dom 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 | ⊢ dom ( 𝐴 ∘ 𝐵 ) = ran ◡ ( 𝐴 ∘ 𝐵 ) | |
2 | cnvco | ⊢ ◡ ( 𝐴 ∘ 𝐵 ) = ( ◡ 𝐵 ∘ ◡ 𝐴 ) | |
3 | 2 | rneqi | ⊢ ran ◡ ( 𝐴 ∘ 𝐵 ) = ran ( ◡ 𝐵 ∘ ◡ 𝐴 ) |
4 | rnco2 | ⊢ ran ( ◡ 𝐵 ∘ ◡ 𝐴 ) = ( ◡ 𝐵 “ ran ◡ 𝐴 ) | |
5 | dfdm4 | ⊢ dom 𝐴 = ran ◡ 𝐴 | |
6 | 5 | imaeq2i | ⊢ ( ◡ 𝐵 “ dom 𝐴 ) = ( ◡ 𝐵 “ ran ◡ 𝐴 ) |
7 | 4 6 | eqtr4i | ⊢ ran ( ◡ 𝐵 ∘ ◡ 𝐴 ) = ( ◡ 𝐵 “ dom 𝐴 ) |
8 | 1 3 7 | 3eqtri | ⊢ dom ( 𝐴 ∘ 𝐵 ) = ( ◡ 𝐵 “ dom 𝐴 ) |