| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							relco | 
							⊢ Rel  ( 𝐴  ∘  𝐵 )  | 
						
						
							| 2 | 
							
								
							 | 
							relrn0 | 
							⊢ ( Rel  ( 𝐴  ∘  𝐵 )  →  ( ( 𝐴  ∘  𝐵 )  =  ∅  ↔  ran  ( 𝐴  ∘  𝐵 )  =  ∅ ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							ax-mp | 
							⊢ ( ( 𝐴  ∘  𝐵 )  =  ∅  ↔  ran  ( 𝐴  ∘  𝐵 )  =  ∅ )  | 
						
						
							| 4 | 
							
								
							 | 
							rnco | 
							⊢ ran  ( 𝐴  ∘  𝐵 )  =  ran  ( 𝐴  ↾  ran  𝐵 )  | 
						
						
							| 5 | 
							
								4
							 | 
							eqeq1i | 
							⊢ ( ran  ( 𝐴  ∘  𝐵 )  =  ∅  ↔  ran  ( 𝐴  ↾  ran  𝐵 )  =  ∅ )  | 
						
						
							| 6 | 
							
								
							 | 
							relres | 
							⊢ Rel  ( 𝐴  ↾  ran  𝐵 )  | 
						
						
							| 7 | 
							
								
							 | 
							reldm0 | 
							⊢ ( Rel  ( 𝐴  ↾  ran  𝐵 )  →  ( ( 𝐴  ↾  ran  𝐵 )  =  ∅  ↔  dom  ( 𝐴  ↾  ran  𝐵 )  =  ∅ ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							ax-mp | 
							⊢ ( ( 𝐴  ↾  ran  𝐵 )  =  ∅  ↔  dom  ( 𝐴  ↾  ran  𝐵 )  =  ∅ )  | 
						
						
							| 9 | 
							
								
							 | 
							relrn0 | 
							⊢ ( Rel  ( 𝐴  ↾  ran  𝐵 )  →  ( ( 𝐴  ↾  ran  𝐵 )  =  ∅  ↔  ran  ( 𝐴  ↾  ran  𝐵 )  =  ∅ ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							ax-mp | 
							⊢ ( ( 𝐴  ↾  ran  𝐵 )  =  ∅  ↔  ran  ( 𝐴  ↾  ran  𝐵 )  =  ∅ )  | 
						
						
							| 11 | 
							
								
							 | 
							dmres | 
							⊢ dom  ( 𝐴  ↾  ran  𝐵 )  =  ( ran  𝐵  ∩  dom  𝐴 )  | 
						
						
							| 12 | 
							
								
							 | 
							incom | 
							⊢ ( ran  𝐵  ∩  dom  𝐴 )  =  ( dom  𝐴  ∩  ran  𝐵 )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							eqtri | 
							⊢ dom  ( 𝐴  ↾  ran  𝐵 )  =  ( dom  𝐴  ∩  ran  𝐵 )  | 
						
						
							| 14 | 
							
								13
							 | 
							eqeq1i | 
							⊢ ( dom  ( 𝐴  ↾  ran  𝐵 )  =  ∅  ↔  ( dom  𝐴  ∩  ran  𝐵 )  =  ∅ )  | 
						
						
							| 15 | 
							
								8 10 14
							 | 
							3bitr3i | 
							⊢ ( ran  ( 𝐴  ↾  ran  𝐵 )  =  ∅  ↔  ( dom  𝐴  ∩  ran  𝐵 )  =  ∅ )  | 
						
						
							| 16 | 
							
								3 5 15
							 | 
							3bitri | 
							⊢ ( ( 𝐴  ∘  𝐵 )  =  ∅  ↔  ( dom  𝐴  ∩  ran  𝐵 )  =  ∅ )  |