| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relco |
|- Rel ( A o. B ) |
| 2 |
|
relrn0 |
|- ( Rel ( A o. B ) -> ( ( A o. B ) = (/) <-> ran ( A o. B ) = (/) ) ) |
| 3 |
1 2
|
ax-mp |
|- ( ( A o. B ) = (/) <-> ran ( A o. B ) = (/) ) |
| 4 |
|
rnco |
|- ran ( A o. B ) = ran ( A |` ran B ) |
| 5 |
4
|
eqeq1i |
|- ( ran ( A o. B ) = (/) <-> ran ( A |` ran B ) = (/) ) |
| 6 |
|
relres |
|- Rel ( A |` ran B ) |
| 7 |
|
reldm0 |
|- ( Rel ( A |` ran B ) -> ( ( A |` ran B ) = (/) <-> dom ( A |` ran B ) = (/) ) ) |
| 8 |
6 7
|
ax-mp |
|- ( ( A |` ran B ) = (/) <-> dom ( A |` ran B ) = (/) ) |
| 9 |
|
relrn0 |
|- ( Rel ( A |` ran B ) -> ( ( A |` ran B ) = (/) <-> ran ( A |` ran B ) = (/) ) ) |
| 10 |
6 9
|
ax-mp |
|- ( ( A |` ran B ) = (/) <-> ran ( A |` ran B ) = (/) ) |
| 11 |
|
dmres |
|- dom ( A |` ran B ) = ( ran B i^i dom A ) |
| 12 |
|
incom |
|- ( ran B i^i dom A ) = ( dom A i^i ran B ) |
| 13 |
11 12
|
eqtri |
|- dom ( A |` ran B ) = ( dom A i^i ran B ) |
| 14 |
13
|
eqeq1i |
|- ( dom ( A |` ran B ) = (/) <-> ( dom A i^i ran B ) = (/) ) |
| 15 |
8 10 14
|
3bitr3i |
|- ( ran ( A |` ran B ) = (/) <-> ( dom A i^i ran B ) = (/) ) |
| 16 |
3 5 15
|
3bitri |
|- ( ( A o. B ) = (/) <-> ( dom A i^i ran B ) = (/) ) |