| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 2 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 3 | 
							
								1 2
							 | 
							brco | 
							⊢ ( 𝑥 ( 𝐴  ∘  𝐵 ) 𝑦  ↔  ∃ 𝑧 ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							exbii | 
							⊢ ( ∃ 𝑥 𝑥 ( 𝐴  ∘  𝐵 ) 𝑦  ↔  ∃ 𝑥 ∃ 𝑧 ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							excom | 
							⊢ ( ∃ 𝑥 ∃ 𝑧 ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 )  ↔  ∃ 𝑧 ∃ 𝑥 ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							vex | 
							⊢ 𝑧  ∈  V  | 
						
						
							| 7 | 
							
								6
							 | 
							elrn | 
							⊢ ( 𝑧  ∈  ran  𝐵  ↔  ∃ 𝑥 𝑥 𝐵 𝑧 )  | 
						
						
							| 8 | 
							
								7
							 | 
							anbi1i | 
							⊢ ( ( 𝑧  ∈  ran  𝐵  ∧  𝑧 𝐴 𝑦 )  ↔  ( ∃ 𝑥 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 ) )  | 
						
						
							| 9 | 
							
								2
							 | 
							brresi | 
							⊢ ( 𝑧 ( 𝐴  ↾  ran  𝐵 ) 𝑦  ↔  ( 𝑧  ∈  ran  𝐵  ∧  𝑧 𝐴 𝑦 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							19.41v | 
							⊢ ( ∃ 𝑥 ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 )  ↔  ( ∃ 𝑥 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 ) )  | 
						
						
							| 11 | 
							
								8 9 10
							 | 
							3bitr4ri | 
							⊢ ( ∃ 𝑥 ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 )  ↔  𝑧 ( 𝐴  ↾  ran  𝐵 ) 𝑦 )  | 
						
						
							| 12 | 
							
								11
							 | 
							exbii | 
							⊢ ( ∃ 𝑧 ∃ 𝑥 ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 )  ↔  ∃ 𝑧 𝑧 ( 𝐴  ↾  ran  𝐵 ) 𝑦 )  | 
						
						
							| 13 | 
							
								4 5 12
							 | 
							3bitri | 
							⊢ ( ∃ 𝑥 𝑥 ( 𝐴  ∘  𝐵 ) 𝑦  ↔  ∃ 𝑧 𝑧 ( 𝐴  ↾  ran  𝐵 ) 𝑦 )  | 
						
						
							| 14 | 
							
								2
							 | 
							elrn | 
							⊢ ( 𝑦  ∈  ran  ( 𝐴  ∘  𝐵 )  ↔  ∃ 𝑥 𝑥 ( 𝐴  ∘  𝐵 ) 𝑦 )  | 
						
						
							| 15 | 
							
								2
							 | 
							elrn | 
							⊢ ( 𝑦  ∈  ran  ( 𝐴  ↾  ran  𝐵 )  ↔  ∃ 𝑧 𝑧 ( 𝐴  ↾  ran  𝐵 ) 𝑦 )  | 
						
						
							| 16 | 
							
								13 14 15
							 | 
							3bitr4i | 
							⊢ ( 𝑦  ∈  ran  ( 𝐴  ∘  𝐵 )  ↔  𝑦  ∈  ran  ( 𝐴  ↾  ran  𝐵 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							eqriv | 
							⊢ ran  ( 𝐴  ∘  𝐵 )  =  ran  ( 𝐴  ↾  ran  𝐵 )  |