Metamath Proof Explorer


Theorem rnco

Description: The range of the composition of two classes. (Contributed by NM, 12-Dec-2006) (Proof shortened by Peter Mazsa, 2-Oct-2022) Avoid ax-11 . (Revised by TM, 24-Jan-2026)

Ref Expression
Assertion rnco ran A B = ran A ran B

Proof

Step Hyp Ref Expression
1 vex x V
2 vex y V
3 1 2 brco x A B y z x B z z A y
4 3 exbii x x A B y x z x B z z A y
5 breq1 x = w x B z w B z
6 5 anbi1d x = w x B z z A y w B z z A y
7 breq2 z = w x B z x B w
8 breq1 z = w z A y w A y
9 7 8 anbi12d z = w x B z z A y x B w w A y
10 6 9 excomw x z x B z z A y z x x B z z A y
11 vex z V
12 11 elrn z ran B x x B z
13 12 anbi1i z ran B z A y x x B z z A y
14 2 brresi z A ran B y z ran B z A y
15 19.41v x x B z z A y x x B z z A y
16 13 14 15 3bitr4ri x x B z z A y z A ran B y
17 16 exbii z x x B z z A y z z A ran B y
18 4 10 17 3bitri x x A B y z z A ran B y
19 2 elrn y ran A B x x A B y
20 2 elrn y ran A ran B z z A ran B y
21 18 19 20 3bitr4i y ran A B y ran A ran B
22 21 eqriv ran A B = ran A ran B