Metamath Proof Explorer


Theorem dmco

Description: The domain of a composition. Exercise 27 of Enderton p. 53. (Contributed by NM, 4-Feb-2004)

Ref Expression
Assertion dmco
|- dom ( A o. B ) = ( `' B " dom A )

Proof

Step Hyp Ref Expression
1 dfdm4
 |-  dom ( A o. B ) = ran `' ( A o. B )
2 cnvco
 |-  `' ( A o. B ) = ( `' B o. `' A )
3 2 rneqi
 |-  ran `' ( A o. B ) = ran ( `' B o. `' A )
4 rnco2
 |-  ran ( `' B o. `' A ) = ( `' B " ran `' A )
5 dfdm4
 |-  dom A = ran `' A
6 5 imaeq2i
 |-  ( `' B " dom A ) = ( `' B " ran `' A )
7 4 6 eqtr4i
 |-  ran ( `' B o. `' A ) = ( `' B " dom A )
8 1 3 7 3eqtri
 |-  dom ( A o. B ) = ( `' B " dom A )