| Step |
Hyp |
Ref |
Expression |
| 1 |
|
snnzg |
⊢ ( 𝐴 ∈ 𝑉 → { 𝐴 } ≠ ∅ ) |
| 2 |
|
fo2ndres |
⊢ ( { 𝐴 } ≠ ∅ → ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) : ( { 𝐴 } × 𝐵 ) –onto→ 𝐵 ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) : ( { 𝐴 } × 𝐵 ) –onto→ 𝐵 ) |
| 4 |
|
moeq |
⊢ ∃* 𝑥 𝑥 = 〈 𝐴 , 𝑦 〉 |
| 5 |
4
|
moani |
⊢ ∃* 𝑥 ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) |
| 6 |
|
vex |
⊢ 𝑦 ∈ V |
| 7 |
6
|
brresi |
⊢ ( 𝑥 ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) 𝑦 ↔ ( 𝑥 ∈ ( { 𝐴 } × 𝐵 ) ∧ 𝑥 2nd 𝑦 ) ) |
| 8 |
|
fo2nd |
⊢ 2nd : V –onto→ V |
| 9 |
|
fofn |
⊢ ( 2nd : V –onto→ V → 2nd Fn V ) |
| 10 |
8 9
|
ax-mp |
⊢ 2nd Fn V |
| 11 |
|
vex |
⊢ 𝑥 ∈ V |
| 12 |
|
fnbrfvb |
⊢ ( ( 2nd Fn V ∧ 𝑥 ∈ V ) → ( ( 2nd ‘ 𝑥 ) = 𝑦 ↔ 𝑥 2nd 𝑦 ) ) |
| 13 |
10 11 12
|
mp2an |
⊢ ( ( 2nd ‘ 𝑥 ) = 𝑦 ↔ 𝑥 2nd 𝑦 ) |
| 14 |
13
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( { 𝐴 } × 𝐵 ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) ↔ ( 𝑥 ∈ ( { 𝐴 } × 𝐵 ) ∧ 𝑥 2nd 𝑦 ) ) |
| 15 |
|
elxp7 |
⊢ ( 𝑥 ∈ ( { 𝐴 } × 𝐵 ) ↔ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ { 𝐴 } ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
| 16 |
|
eleq1 |
⊢ ( ( 2nd ‘ 𝑥 ) = 𝑦 → ( ( 2nd ‘ 𝑥 ) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
| 17 |
16
|
biimpac |
⊢ ( ( ( 2nd ‘ 𝑥 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ 𝐵 ) |
| 18 |
17
|
adantll |
⊢ ( ( ( ( 1st ‘ 𝑥 ) ∈ { 𝐴 } ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐵 ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ 𝐵 ) |
| 19 |
18
|
adantll |
⊢ ( ( ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ { 𝐴 } ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐵 ) ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ 𝐵 ) |
| 20 |
|
elsni |
⊢ ( ( 1st ‘ 𝑥 ) ∈ { 𝐴 } → ( 1st ‘ 𝑥 ) = 𝐴 ) |
| 21 |
|
eqopi |
⊢ ( ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) = 𝐴 ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) ) → 𝑥 = 〈 𝐴 , 𝑦 〉 ) |
| 22 |
21
|
anassrs |
⊢ ( ( ( 𝑥 ∈ ( V × V ) ∧ ( 1st ‘ 𝑥 ) = 𝐴 ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) → 𝑥 = 〈 𝐴 , 𝑦 〉 ) |
| 23 |
20 22
|
sylanl2 |
⊢ ( ( ( 𝑥 ∈ ( V × V ) ∧ ( 1st ‘ 𝑥 ) ∈ { 𝐴 } ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) → 𝑥 = 〈 𝐴 , 𝑦 〉 ) |
| 24 |
23
|
adantlrr |
⊢ ( ( ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ { 𝐴 } ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐵 ) ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) → 𝑥 = 〈 𝐴 , 𝑦 〉 ) |
| 25 |
19 24
|
jca |
⊢ ( ( ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ { 𝐴 } ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐵 ) ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) → ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) |
| 26 |
15 25
|
sylanb |
⊢ ( ( 𝑥 ∈ ( { 𝐴 } × 𝐵 ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) → ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ ( { 𝐴 } × 𝐵 ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) ) → ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) |
| 28 |
|
simprr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) → 𝑥 = 〈 𝐴 , 𝑦 〉 ) |
| 29 |
|
snidg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 } ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) → 𝐴 ∈ { 𝐴 } ) |
| 31 |
|
simprl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) → 𝑦 ∈ 𝐵 ) |
| 32 |
30 31
|
opelxpd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) → 〈 𝐴 , 𝑦 〉 ∈ ( { 𝐴 } × 𝐵 ) ) |
| 33 |
28 32
|
eqeltrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) → 𝑥 ∈ ( { 𝐴 } × 𝐵 ) ) |
| 34 |
|
fveq2 |
⊢ ( 𝑥 = 〈 𝐴 , 𝑦 〉 → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 〈 𝐴 , 𝑦 〉 ) ) |
| 35 |
|
op2ndg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ V ) → ( 2nd ‘ 〈 𝐴 , 𝑦 〉 ) = 𝑦 ) |
| 36 |
35
|
elvd |
⊢ ( 𝐴 ∈ 𝑉 → ( 2nd ‘ 〈 𝐴 , 𝑦 〉 ) = 𝑦 ) |
| 37 |
34 36
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) → ( 2nd ‘ 𝑥 ) = 𝑦 ) |
| 38 |
37
|
adantrl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) → ( 2nd ‘ 𝑥 ) = 𝑦 ) |
| 39 |
33 38
|
jca |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) → ( 𝑥 ∈ ( { 𝐴 } × 𝐵 ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) ) |
| 40 |
27 39
|
impbida |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ ( { 𝐴 } × 𝐵 ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) ) |
| 41 |
14 40
|
bitr3id |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ ( { 𝐴 } × 𝐵 ) ∧ 𝑥 2nd 𝑦 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) ) |
| 42 |
7 41
|
bitrid |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) 𝑦 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) ) |
| 43 |
42
|
mobidv |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃* 𝑥 𝑥 ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) 𝑦 ↔ ∃* 𝑥 ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) ) |
| 44 |
5 43
|
mpbiri |
⊢ ( 𝐴 ∈ 𝑉 → ∃* 𝑥 𝑥 ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) 𝑦 ) |
| 45 |
44
|
alrimiv |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑦 ∃* 𝑥 𝑥 ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) 𝑦 ) |
| 46 |
|
funcnv2 |
⊢ ( Fun ◡ ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) ↔ ∀ 𝑦 ∃* 𝑥 𝑥 ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) 𝑦 ) |
| 47 |
45 46
|
sylibr |
⊢ ( 𝐴 ∈ 𝑉 → Fun ◡ ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) ) |
| 48 |
|
dff1o3 |
⊢ ( ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) : ( { 𝐴 } × 𝐵 ) –1-1-onto→ 𝐵 ↔ ( ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) : ( { 𝐴 } × 𝐵 ) –onto→ 𝐵 ∧ Fun ◡ ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) ) ) |
| 49 |
3 47 48
|
sylanbrc |
⊢ ( 𝐴 ∈ 𝑉 → ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) : ( { 𝐴 } × 𝐵 ) –1-1-onto→ 𝐵 ) |