Metamath Proof Explorer


Theorem fo2nd

Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion fo2nd 2nd : V –onto→ V

Proof

Step Hyp Ref Expression
1 snex { 𝑥 } ∈ V
2 1 rnex ran { 𝑥 } ∈ V
3 2 uniex ran { 𝑥 } ∈ V
4 df-2nd 2nd = ( 𝑥 ∈ V ↦ ran { 𝑥 } )
5 3 4 fnmpti 2nd Fn V
6 4 rnmpt ran 2nd = { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = ran { 𝑥 } }
7 vex 𝑦 ∈ V
8 opex 𝑦 , 𝑦 ⟩ ∈ V
9 7 7 op2nda ran { ⟨ 𝑦 , 𝑦 ⟩ } = 𝑦
10 9 eqcomi 𝑦 = ran { ⟨ 𝑦 , 𝑦 ⟩ }
11 sneq ( 𝑥 = ⟨ 𝑦 , 𝑦 ⟩ → { 𝑥 } = { ⟨ 𝑦 , 𝑦 ⟩ } )
12 11 rneqd ( 𝑥 = ⟨ 𝑦 , 𝑦 ⟩ → ran { 𝑥 } = ran { ⟨ 𝑦 , 𝑦 ⟩ } )
13 12 unieqd ( 𝑥 = ⟨ 𝑦 , 𝑦 ⟩ → ran { 𝑥 } = ran { ⟨ 𝑦 , 𝑦 ⟩ } )
14 13 rspceeqv ( ( ⟨ 𝑦 , 𝑦 ⟩ ∈ V ∧ 𝑦 = ran { ⟨ 𝑦 , 𝑦 ⟩ } ) → ∃ 𝑥 ∈ V 𝑦 = ran { 𝑥 } )
15 8 10 14 mp2an 𝑥 ∈ V 𝑦 = ran { 𝑥 }
16 7 15 2th ( 𝑦 ∈ V ↔ ∃ 𝑥 ∈ V 𝑦 = ran { 𝑥 } )
17 16 abbi2i V = { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = ran { 𝑥 } }
18 6 17 eqtr4i ran 2nd = V
19 df-fo ( 2nd : V –onto→ V ↔ ( 2nd Fn V ∧ ran 2nd = V ) )
20 5 18 19 mpbir2an 2nd : V –onto→ V