Metamath Proof Explorer


Theorem 2ndconst

Description: The mapping of a restriction of the 2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Assertion 2ndconst A V 2 nd A × B : A × B 1-1 onto B

Proof

Step Hyp Ref Expression
1 snnzg A V A
2 fo2ndres A 2 nd A × B : A × B onto B
3 1 2 syl A V 2 nd A × B : A × B onto B
4 moeq * x x = A y
5 4 moani * x y B x = A y
6 vex y V
7 6 brresi x 2 nd A × B y x A × B x 2 nd y
8 fo2nd 2 nd : V onto V
9 fofn 2 nd : V onto V 2 nd Fn V
10 8 9 ax-mp 2 nd Fn V
11 vex x V
12 fnbrfvb 2 nd Fn V x V 2 nd x = y x 2 nd y
13 10 11 12 mp2an 2 nd x = y x 2 nd y
14 13 anbi2i x A × B 2 nd x = y x A × B x 2 nd y
15 elxp7 x A × B x V × V 1 st x A 2 nd x B
16 eleq1 2 nd x = y 2 nd x B y B
17 16 biimpac 2 nd x B 2 nd x = y y B
18 17 adantll 1 st x A 2 nd x B 2 nd x = y y B
19 18 adantll x V × V 1 st x A 2 nd x B 2 nd x = y y B
20 elsni 1 st x A 1 st x = A
21 eqopi x V × V 1 st x = A 2 nd x = y x = A y
22 21 anassrs x V × V 1 st x = A 2 nd x = y x = A y
23 20 22 sylanl2 x V × V 1 st x A 2 nd x = y x = A y
24 23 adantlrr x V × V 1 st x A 2 nd x B 2 nd x = y x = A y
25 19 24 jca x V × V 1 st x A 2 nd x B 2 nd x = y y B x = A y
26 15 25 sylanb x A × B 2 nd x = y y B x = A y
27 26 adantl A V x A × B 2 nd x = y y B x = A y
28 simprr A V y B x = A y x = A y
29 snidg A V A A
30 29 adantr A V y B x = A y A A
31 simprl A V y B x = A y y B
32 30 31 opelxpd A V y B x = A y A y A × B
33 28 32 eqeltrd A V y B x = A y x A × B
34 fveq2 x = A y 2 nd x = 2 nd A y
35 op2ndg A V y V 2 nd A y = y
36 35 elvd A V 2 nd A y = y
37 34 36 sylan9eqr A V x = A y 2 nd x = y
38 37 adantrl A V y B x = A y 2 nd x = y
39 33 38 jca A V y B x = A y x A × B 2 nd x = y
40 27 39 impbida A V x A × B 2 nd x = y y B x = A y
41 14 40 bitr3id A V x A × B x 2 nd y y B x = A y
42 7 41 bitrid A V x 2 nd A × B y y B x = A y
43 42 mobidv A V * x x 2 nd A × B y * x y B x = A y
44 5 43 mpbiri A V * x x 2 nd A × B y
45 44 alrimiv A V y * x x 2 nd A × B y
46 funcnv2 Fun 2 nd A × B -1 y * x x 2 nd A × B y
47 45 46 sylibr A V Fun 2 nd A × B -1
48 dff1o3 2 nd A × B : A × B 1-1 onto B 2 nd A × B : A × B onto B Fun 2 nd A × B -1
49 3 47 48 sylanbrc A V 2 nd A × B : A × B 1-1 onto B