Metamath Proof Explorer


Theorem fo2ndres

Description: Onto mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 14-Dec-2008)

Ref Expression
Assertion fo2ndres A 2 nd A × B : A × B onto B

Proof

Step Hyp Ref Expression
1 n0 A x x A
2 opelxp x y A × B x A y B
3 fvres x y A × B 2 nd A × B x y = 2 nd x y
4 vex x V
5 vex y V
6 4 5 op2nd 2 nd x y = y
7 3 6 eqtr2di x y A × B y = 2 nd A × B x y
8 f2ndres 2 nd A × B : A × B B
9 ffn 2 nd A × B : A × B B 2 nd A × B Fn A × B
10 8 9 ax-mp 2 nd A × B Fn A × B
11 fnfvelrn 2 nd A × B Fn A × B x y A × B 2 nd A × B x y ran 2 nd A × B
12 10 11 mpan x y A × B 2 nd A × B x y ran 2 nd A × B
13 7 12 eqeltrd x y A × B y ran 2 nd A × B
14 2 13 sylbir x A y B y ran 2 nd A × B
15 14 ex x A y B y ran 2 nd A × B
16 15 exlimiv x x A y B y ran 2 nd A × B
17 1 16 sylbi A y B y ran 2 nd A × B
18 17 ssrdv A B ran 2 nd A × B
19 frn 2 nd A × B : A × B B ran 2 nd A × B B
20 8 19 ax-mp ran 2 nd A × B B
21 18 20 jctil A ran 2 nd A × B B B ran 2 nd A × B
22 eqss ran 2 nd A × B = B ran 2 nd A × B B B ran 2 nd A × B
23 21 22 sylibr A ran 2 nd A × B = B
24 23 8 jctil A 2 nd A × B : A × B B ran 2 nd A × B = B
25 dffo2 2 nd A × B : A × B onto B 2 nd A × B : A × B B ran 2 nd A × B = B
26 24 25 sylibr A 2 nd A × B : A × B onto B