Metamath Proof Explorer


Theorem dfmpo

Description: Alternate definition for the maps-to notation df-mpo (although it requires that C be a set). (Contributed by NM, 19-Dec-2008) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis dfmpo.1 CV
Assertion dfmpo xA,yBC=xAyBxyC

Proof

Step Hyp Ref Expression
1 dfmpo.1 CV
2 mpompts xA,yBC=wA×B1stw/x2ndw/yC
3 1 csbex 2ndw/yCV
4 3 csbex 1stw/x2ndw/yCV
5 4 dfmpt wA×B1stw/x2ndw/yC=wA×Bw1stw/x2ndw/yC
6 nfcv _xw
7 nfcsb1v _x1stw/x2ndw/yC
8 6 7 nfop _xw1stw/x2ndw/yC
9 8 nfsn _xw1stw/x2ndw/yC
10 nfcv _yw
11 nfcv _y1stw
12 nfcsb1v _y2ndw/yC
13 11 12 nfcsbw _y1stw/x2ndw/yC
14 10 13 nfop _yw1stw/x2ndw/yC
15 14 nfsn _yw1stw/x2ndw/yC
16 nfcv _wxyC
17 id w=xyw=xy
18 csbopeq1a w=xy1stw/x2ndw/yC=C
19 17 18 opeq12d w=xyw1stw/x2ndw/yC=xyC
20 19 sneqd w=xyw1stw/x2ndw/yC=xyC
21 9 15 16 20 iunxpf wA×Bw1stw/x2ndw/yC=xAyBxyC
22 2 5 21 3eqtri xA,yBC=xAyBxyC