Metamath Proof Explorer


Theorem dfmpo

Description: Alternate definition for the maps-to notation df-mpo (although it requires that C be a set). (Contributed by NM, 19-Dec-2008) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis dfmpo.1 𝐶 ∈ V
Assertion dfmpo ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = 𝑥𝐴 𝑦𝐵 { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝐶 ⟩ }

Proof

Step Hyp Ref Expression
1 dfmpo.1 𝐶 ∈ V
2 mpompts ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↦ ( 1st𝑤 ) / 𝑥 ( 2nd𝑤 ) / 𝑦 𝐶 )
3 1 csbex ( 2nd𝑤 ) / 𝑦 𝐶 ∈ V
4 3 csbex ( 1st𝑤 ) / 𝑥 ( 2nd𝑤 ) / 𝑦 𝐶 ∈ V
5 4 dfmpt ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↦ ( 1st𝑤 ) / 𝑥 ( 2nd𝑤 ) / 𝑦 𝐶 ) = 𝑤 ∈ ( 𝐴 × 𝐵 ) { ⟨ 𝑤 , ( 1st𝑤 ) / 𝑥 ( 2nd𝑤 ) / 𝑦 𝐶 ⟩ }
6 nfcv 𝑥 𝑤
7 nfcsb1v 𝑥 ( 1st𝑤 ) / 𝑥 ( 2nd𝑤 ) / 𝑦 𝐶
8 6 7 nfop 𝑥𝑤 , ( 1st𝑤 ) / 𝑥 ( 2nd𝑤 ) / 𝑦 𝐶
9 8 nfsn 𝑥 { ⟨ 𝑤 , ( 1st𝑤 ) / 𝑥 ( 2nd𝑤 ) / 𝑦 𝐶 ⟩ }
10 nfcv 𝑦 𝑤
11 nfcv 𝑦 ( 1st𝑤 )
12 nfcsb1v 𝑦 ( 2nd𝑤 ) / 𝑦 𝐶
13 11 12 nfcsbw 𝑦 ( 1st𝑤 ) / 𝑥 ( 2nd𝑤 ) / 𝑦 𝐶
14 10 13 nfop 𝑦𝑤 , ( 1st𝑤 ) / 𝑥 ( 2nd𝑤 ) / 𝑦 𝐶
15 14 nfsn 𝑦 { ⟨ 𝑤 , ( 1st𝑤 ) / 𝑥 ( 2nd𝑤 ) / 𝑦 𝐶 ⟩ }
16 nfcv 𝑤 { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝐶 ⟩ }
17 id ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ → 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ )
18 csbopeq1a ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ → ( 1st𝑤 ) / 𝑥 ( 2nd𝑤 ) / 𝑦 𝐶 = 𝐶 )
19 17 18 opeq12d ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ → ⟨ 𝑤 , ( 1st𝑤 ) / 𝑥 ( 2nd𝑤 ) / 𝑦 𝐶 ⟩ = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝐶 ⟩ )
20 19 sneqd ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ → { ⟨ 𝑤 , ( 1st𝑤 ) / 𝑥 ( 2nd𝑤 ) / 𝑦 𝐶 ⟩ } = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝐶 ⟩ } )
21 9 15 16 20 iunxpf 𝑤 ∈ ( 𝐴 × 𝐵 ) { ⟨ 𝑤 , ( 1st𝑤 ) / 𝑥 ( 2nd𝑤 ) / 𝑦 𝐶 ⟩ } = 𝑥𝐴 𝑦𝐵 { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝐶 ⟩ }
22 2 5 21 3eqtri ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = 𝑥𝐴 𝑦𝐵 { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝐶 ⟩ }