Step |
Hyp |
Ref |
Expression |
1 |
|
dfmpo.1 |
|- C e. _V |
2 |
|
mpompts |
|- ( x e. A , y e. B |-> C ) = ( w e. ( A X. B ) |-> [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C ) |
3 |
1
|
csbex |
|- [_ ( 2nd ` w ) / y ]_ C e. _V |
4 |
3
|
csbex |
|- [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C e. _V |
5 |
4
|
dfmpt |
|- ( w e. ( A X. B ) |-> [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C ) = U_ w e. ( A X. B ) { <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. } |
6 |
|
nfcv |
|- F/_ x w |
7 |
|
nfcsb1v |
|- F/_ x [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C |
8 |
6 7
|
nfop |
|- F/_ x <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. |
9 |
8
|
nfsn |
|- F/_ x { <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. } |
10 |
|
nfcv |
|- F/_ y w |
11 |
|
nfcv |
|- F/_ y ( 1st ` w ) |
12 |
|
nfcsb1v |
|- F/_ y [_ ( 2nd ` w ) / y ]_ C |
13 |
11 12
|
nfcsbw |
|- F/_ y [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C |
14 |
10 13
|
nfop |
|- F/_ y <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. |
15 |
14
|
nfsn |
|- F/_ y { <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. } |
16 |
|
nfcv |
|- F/_ w { <. <. x , y >. , C >. } |
17 |
|
id |
|- ( w = <. x , y >. -> w = <. x , y >. ) |
18 |
|
csbopeq1a |
|- ( w = <. x , y >. -> [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C = C ) |
19 |
17 18
|
opeq12d |
|- ( w = <. x , y >. -> <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. = <. <. x , y >. , C >. ) |
20 |
19
|
sneqd |
|- ( w = <. x , y >. -> { <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. } = { <. <. x , y >. , C >. } ) |
21 |
9 15 16 20
|
iunxpf |
|- U_ w e. ( A X. B ) { <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. } = U_ x e. A U_ y e. B { <. <. x , y >. , C >. } |
22 |
2 5 21
|
3eqtri |
|- ( x e. A , y e. B |-> C ) = U_ x e. A U_ y e. B { <. <. x , y >. , C >. } |