Metamath Proof Explorer


Theorem iunxpf

Description: Indexed union on a Cartesian product equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008)

Ref Expression
Hypotheses iunxpf.1 𝑦 𝐶
iunxpf.2 𝑧 𝐶
iunxpf.3 𝑥 𝐷
iunxpf.4 ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → 𝐶 = 𝐷 )
Assertion iunxpf 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝐶 = 𝑦𝐴 𝑧𝐵 𝐷

Proof

Step Hyp Ref Expression
1 iunxpf.1 𝑦 𝐶
2 iunxpf.2 𝑧 𝐶
3 iunxpf.3 𝑥 𝐷
4 iunxpf.4 ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → 𝐶 = 𝐷 )
5 1 nfcri 𝑦 𝑤𝐶
6 2 nfcri 𝑧 𝑤𝐶
7 3 nfcri 𝑥 𝑤𝐷
8 4 eleq2d ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( 𝑤𝐶𝑤𝐷 ) )
9 5 6 7 8 rexxpf ( ∃ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝑤𝐶 ↔ ∃ 𝑦𝐴𝑧𝐵 𝑤𝐷 )
10 eliun ( 𝑤 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝐶 ↔ ∃ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝑤𝐶 )
11 eliun ( 𝑤 𝑦𝐴 𝑧𝐵 𝐷 ↔ ∃ 𝑦𝐴 𝑤 𝑧𝐵 𝐷 )
12 eliun ( 𝑤 𝑧𝐵 𝐷 ↔ ∃ 𝑧𝐵 𝑤𝐷 )
13 12 rexbii ( ∃ 𝑦𝐴 𝑤 𝑧𝐵 𝐷 ↔ ∃ 𝑦𝐴𝑧𝐵 𝑤𝐷 )
14 11 13 bitri ( 𝑤 𝑦𝐴 𝑧𝐵 𝐷 ↔ ∃ 𝑦𝐴𝑧𝐵 𝑤𝐷 )
15 9 10 14 3bitr4i ( 𝑤 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝐶𝑤 𝑦𝐴 𝑧𝐵 𝐷 )
16 15 eqriv 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝐶 = 𝑦𝐴 𝑧𝐵 𝐷