| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catbas.c |
|- C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } |
| 2 |
|
catcofval.x |
|- .x. e. _V |
| 3 |
|
catstr |
|- { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } Struct <. 1 , ; 1 5 >. |
| 4 |
1 3
|
eqbrtri |
|- C Struct <. 1 , ; 1 5 >. |
| 5 |
|
ccoid |
|- comp = Slot ( comp ` ndx ) |
| 6 |
|
snsstp3 |
|- { <. ( comp ` ndx ) , .x. >. } C_ { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } |
| 7 |
6 1
|
sseqtrri |
|- { <. ( comp ` ndx ) , .x. >. } C_ C |
| 8 |
4 5 7
|
strfv |
|- ( .x. e. _V -> .x. = ( comp ` C ) ) |
| 9 |
2 8
|
ax-mp |
|- .x. = ( comp ` C ) |