Metamath Proof Explorer


Theorem catcofval

Description: Composition of the category structure. (Contributed by Zhi Wang, 5-Nov-2025)

Ref Expression
Hypotheses catbas.c
|- C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. }
catcofval.x
|- .x. e. _V
Assertion catcofval
|- .x. = ( comp ` C )

Proof

Step Hyp Ref Expression
1 catbas.c
 |-  C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. }
2 catcofval.x
 |-  .x. e. _V
3 catstr
 |-  { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } Struct <. 1 , ; 1 5 >.
4 1 3 eqbrtri
 |-  C Struct <. 1 , ; 1 5 >.
5 ccoid
 |-  comp = Slot ( comp ` ndx )
6 snsstp3
 |-  { <. ( comp ` ndx ) , .x. >. } C_ { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. }
7 6 1 sseqtrri
 |-  { <. ( comp ` ndx ) , .x. >. } C_ C
8 4 5 7 strfv
 |-  ( .x. e. _V -> .x. = ( comp ` C ) )
9 2 8 ax-mp
 |-  .x. = ( comp ` C )