| Step |
Hyp |
Ref |
Expression |
| 1 |
|
natoppf.o |
|- O = ( oppCat ` C ) |
| 2 |
|
natoppf.p |
|- P = ( oppCat ` D ) |
| 3 |
|
natoppf.n |
|- N = ( C Nat D ) |
| 4 |
|
natoppf.m |
|- M = ( O Nat P ) |
| 5 |
|
natoppf.a |
|- ( ph -> A e. ( <. F , G >. N <. K , L >. ) ) |
| 6 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 7 |
1 6
|
oppcbas |
|- ( Base ` C ) = ( Base ` O ) |
| 8 |
|
eqid |
|- ( Hom ` O ) = ( Hom ` O ) |
| 9 |
|
eqid |
|- ( Hom ` P ) = ( Hom ` P ) |
| 10 |
|
eqid |
|- ( comp ` P ) = ( comp ` P ) |
| 11 |
3 5
|
natrcl3 |
|- ( ph -> K ( C Func D ) L ) |
| 12 |
1 2 11
|
funcoppc |
|- ( ph -> K ( O Func P ) tpos L ) |
| 13 |
3 5
|
natrcl2 |
|- ( ph -> F ( C Func D ) G ) |
| 14 |
1 2 13
|
funcoppc |
|- ( ph -> F ( O Func P ) tpos G ) |
| 15 |
3 5 6
|
natfn |
|- ( ph -> A Fn ( Base ` C ) ) |
| 16 |
5
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> A e. ( <. F , G >. N <. K , L >. ) ) |
| 17 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 18 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
| 19 |
3 16 6 17 18
|
natcl |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( A ` x ) e. ( ( F ` x ) ( Hom ` D ) ( K ` x ) ) ) |
| 20 |
17 2
|
oppchom |
|- ( ( K ` x ) ( Hom ` P ) ( F ` x ) ) = ( ( F ` x ) ( Hom ` D ) ( K ` x ) ) |
| 21 |
19 20
|
eleqtrrdi |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( A ` x ) e. ( ( K ` x ) ( Hom ` P ) ( F ` x ) ) ) |
| 22 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> A e. ( <. F , G >. N <. K , L >. ) ) |
| 23 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 24 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
| 25 |
|
simplrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> y e. ( Base ` C ) ) |
| 26 |
|
simplrl |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> x e. ( Base ` C ) ) |
| 27 |
|
simpr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> m e. ( x ( Hom ` O ) y ) ) |
| 28 |
23 1
|
oppchom |
|- ( x ( Hom ` O ) y ) = ( y ( Hom ` C ) x ) |
| 29 |
27 28
|
eleqtrdi |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> m e. ( y ( Hom ` C ) x ) ) |
| 30 |
3 22 6 23 24 25 26 29
|
nati |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> ( ( A ` x ) ( <. ( F ` y ) , ( F ` x ) >. ( comp ` D ) ( K ` x ) ) ( ( y G x ) ` m ) ) = ( ( ( y L x ) ` m ) ( <. ( F ` y ) , ( K ` y ) >. ( comp ` D ) ( K ` x ) ) ( A ` y ) ) ) |
| 31 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 32 |
6 31 11
|
funcf1 |
|- ( ph -> K : ( Base ` C ) --> ( Base ` D ) ) |
| 33 |
32
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> K : ( Base ` C ) --> ( Base ` D ) ) |
| 34 |
33 26
|
ffvelcdmd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> ( K ` x ) e. ( Base ` D ) ) |
| 35 |
6 31 13
|
funcf1 |
|- ( ph -> F : ( Base ` C ) --> ( Base ` D ) ) |
| 36 |
35
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> F : ( Base ` C ) --> ( Base ` D ) ) |
| 37 |
36 26
|
ffvelcdmd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> ( F ` x ) e. ( Base ` D ) ) |
| 38 |
36 25
|
ffvelcdmd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> ( F ` y ) e. ( Base ` D ) ) |
| 39 |
31 24 2 34 37 38
|
oppcco |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> ( ( ( y G x ) ` m ) ( <. ( K ` x ) , ( F ` x ) >. ( comp ` P ) ( F ` y ) ) ( A ` x ) ) = ( ( A ` x ) ( <. ( F ` y ) , ( F ` x ) >. ( comp ` D ) ( K ` x ) ) ( ( y G x ) ` m ) ) ) |
| 40 |
33 25
|
ffvelcdmd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> ( K ` y ) e. ( Base ` D ) ) |
| 41 |
31 24 2 34 40 38
|
oppcco |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> ( ( A ` y ) ( <. ( K ` x ) , ( K ` y ) >. ( comp ` P ) ( F ` y ) ) ( ( y L x ) ` m ) ) = ( ( ( y L x ) ` m ) ( <. ( F ` y ) , ( K ` y ) >. ( comp ` D ) ( K ` x ) ) ( A ` y ) ) ) |
| 42 |
30 39 41
|
3eqtr4rd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> ( ( A ` y ) ( <. ( K ` x ) , ( K ` y ) >. ( comp ` P ) ( F ` y ) ) ( ( y L x ) ` m ) ) = ( ( ( y G x ) ` m ) ( <. ( K ` x ) , ( F ` x ) >. ( comp ` P ) ( F ` y ) ) ( A ` x ) ) ) |
| 43 |
|
ovtpos |
|- ( x tpos L y ) = ( y L x ) |
| 44 |
43
|
fveq1i |
|- ( ( x tpos L y ) ` m ) = ( ( y L x ) ` m ) |
| 45 |
44
|
oveq2i |
|- ( ( A ` y ) ( <. ( K ` x ) , ( K ` y ) >. ( comp ` P ) ( F ` y ) ) ( ( x tpos L y ) ` m ) ) = ( ( A ` y ) ( <. ( K ` x ) , ( K ` y ) >. ( comp ` P ) ( F ` y ) ) ( ( y L x ) ` m ) ) |
| 46 |
|
ovtpos |
|- ( x tpos G y ) = ( y G x ) |
| 47 |
46
|
fveq1i |
|- ( ( x tpos G y ) ` m ) = ( ( y G x ) ` m ) |
| 48 |
47
|
oveq1i |
|- ( ( ( x tpos G y ) ` m ) ( <. ( K ` x ) , ( F ` x ) >. ( comp ` P ) ( F ` y ) ) ( A ` x ) ) = ( ( ( y G x ) ` m ) ( <. ( K ` x ) , ( F ` x ) >. ( comp ` P ) ( F ` y ) ) ( A ` x ) ) |
| 49 |
42 45 48
|
3eqtr4g |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> ( ( A ` y ) ( <. ( K ` x ) , ( K ` y ) >. ( comp ` P ) ( F ` y ) ) ( ( x tpos L y ) ` m ) ) = ( ( ( x tpos G y ) ` m ) ( <. ( K ` x ) , ( F ` x ) >. ( comp ` P ) ( F ` y ) ) ( A ` x ) ) ) |
| 50 |
4 7 8 9 10 12 14 15 21 49
|
isnatd |
|- ( ph -> A e. ( <. K , tpos L >. M <. F , tpos G >. ) ) |