Description: Reverse closure for a natural transformation. (Contributed by Zhi Wang, 1-Oct-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | natrcl2.n | |- N = ( C Nat D ) |
|
natrcl2.a | |- ( ph -> A e. ( <. F , G >. N <. K , L >. ) ) |
||
Assertion | natrcl3 | |- ( ph -> K ( C Func D ) L ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | natrcl2.n | |- N = ( C Nat D ) |
|
2 | natrcl2.a | |- ( ph -> A e. ( <. F , G >. N <. K , L >. ) ) |
|
3 | 1 | natrcl | |- ( A e. ( <. F , G >. N <. K , L >. ) -> ( <. F , G >. e. ( C Func D ) /\ <. K , L >. e. ( C Func D ) ) ) |
4 | 2 3 | syl | |- ( ph -> ( <. F , G >. e. ( C Func D ) /\ <. K , L >. e. ( C Func D ) ) ) |
5 | 4 | simprd | |- ( ph -> <. K , L >. e. ( C Func D ) ) |
6 | df-br | |- ( K ( C Func D ) L <-> <. K , L >. e. ( C Func D ) ) |
|
7 | 5 6 | sylibr | |- ( ph -> K ( C Func D ) L ) |