Metamath Proof Explorer


Theorem natrcl3

Description: Reverse closure for a natural transformation. (Contributed by Zhi Wang, 1-Oct-2025)

Ref Expression
Hypotheses natrcl2.n N = C Nat D
natrcl2.a φ A F G N K L
Assertion natrcl3 φ K C Func D L

Proof

Step Hyp Ref Expression
1 natrcl2.n N = C Nat D
2 natrcl2.a φ A F G N K L
3 1 natrcl A F G N K L F G C Func D K L C Func D
4 2 3 syl φ F G C Func D K L C Func D
5 4 simprd φ K L C Func D
6 df-br K C Func D L K L C Func D
7 5 6 sylibr φ K C Func D L