| Step |
Hyp |
Ref |
Expression |
| 1 |
|
natoppf.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
natoppf.p |
⊢ 𝑃 = ( oppCat ‘ 𝐷 ) |
| 3 |
|
natoppf.n |
⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) |
| 4 |
|
natoppf.m |
⊢ 𝑀 = ( 𝑂 Nat 𝑃 ) |
| 5 |
|
natoppf.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 7 |
1 6
|
oppcbas |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 8 |
|
eqid |
⊢ ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) |
| 9 |
|
eqid |
⊢ ( Hom ‘ 𝑃 ) = ( Hom ‘ 𝑃 ) |
| 10 |
|
eqid |
⊢ ( comp ‘ 𝑃 ) = ( comp ‘ 𝑃 ) |
| 11 |
3 5
|
natrcl3 |
⊢ ( 𝜑 → 𝐾 ( 𝐶 Func 𝐷 ) 𝐿 ) |
| 12 |
1 2 11
|
funcoppc |
⊢ ( 𝜑 → 𝐾 ( 𝑂 Func 𝑃 ) tpos 𝐿 ) |
| 13 |
3 5
|
natrcl2 |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 14 |
1 2 13
|
funcoppc |
⊢ ( 𝜑 → 𝐹 ( 𝑂 Func 𝑃 ) tpos 𝐺 ) |
| 15 |
3 5 6
|
natfn |
⊢ ( 𝜑 → 𝐴 Fn ( Base ‘ 𝐶 ) ) |
| 16 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) |
| 17 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 19 |
3 16 6 17 18
|
natcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝐴 ‘ 𝑥 ) ∈ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐾 ‘ 𝑥 ) ) ) |
| 20 |
17 2
|
oppchom |
⊢ ( ( 𝐾 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐾 ‘ 𝑥 ) ) |
| 21 |
19 20
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝐴 ‘ 𝑥 ) ∈ ( ( 𝐾 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 22 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) |
| 23 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 24 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
| 25 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 26 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 27 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) |
| 28 |
23 1
|
oppchom |
⊢ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) |
| 29 |
27 28
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → 𝑚 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 30 |
3 22 6 23 24 25 26 29
|
nati |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → ( ( 𝐴 ‘ 𝑥 ) ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝐾 ‘ 𝑥 ) ) ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑚 ) ) = ( ( ( 𝑦 𝐿 𝑥 ) ‘ 𝑚 ) ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐾 ‘ 𝑥 ) ) ( 𝐴 ‘ 𝑦 ) ) ) |
| 31 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 32 |
6 31 11
|
funcf1 |
⊢ ( 𝜑 → 𝐾 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 33 |
32
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → 𝐾 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 34 |
33 26
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → ( 𝐾 ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
| 35 |
6 31 13
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 36 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 37 |
36 26
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
| 38 |
36 25
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) ) |
| 39 |
31 24 2 34 37 38
|
oppcco |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → ( ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑚 ) ( 〈 ( 𝐾 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) = ( ( 𝐴 ‘ 𝑥 ) ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝐾 ‘ 𝑥 ) ) ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑚 ) ) ) |
| 40 |
33 25
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → ( 𝐾 ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) ) |
| 41 |
31 24 2 34 40 38
|
oppcco |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐾 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑦 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ( ( 𝑦 𝐿 𝑥 ) ‘ 𝑚 ) ) = ( ( ( 𝑦 𝐿 𝑥 ) ‘ 𝑚 ) ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐾 ‘ 𝑥 ) ) ( 𝐴 ‘ 𝑦 ) ) ) |
| 42 |
30 39 41
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐾 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑦 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ( ( 𝑦 𝐿 𝑥 ) ‘ 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑚 ) ( 〈 ( 𝐾 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) |
| 43 |
|
ovtpos |
⊢ ( 𝑥 tpos 𝐿 𝑦 ) = ( 𝑦 𝐿 𝑥 ) |
| 44 |
43
|
fveq1i |
⊢ ( ( 𝑥 tpos 𝐿 𝑦 ) ‘ 𝑚 ) = ( ( 𝑦 𝐿 𝑥 ) ‘ 𝑚 ) |
| 45 |
44
|
oveq2i |
⊢ ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐾 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑦 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ( ( 𝑥 tpos 𝐿 𝑦 ) ‘ 𝑚 ) ) = ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐾 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑦 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ( ( 𝑦 𝐿 𝑥 ) ‘ 𝑚 ) ) |
| 46 |
|
ovtpos |
⊢ ( 𝑥 tpos 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) |
| 47 |
46
|
fveq1i |
⊢ ( ( 𝑥 tpos 𝐺 𝑦 ) ‘ 𝑚 ) = ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑚 ) |
| 48 |
47
|
oveq1i |
⊢ ( ( ( 𝑥 tpos 𝐺 𝑦 ) ‘ 𝑚 ) ( 〈 ( 𝐾 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) = ( ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑚 ) ( 〈 ( 𝐾 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) |
| 49 |
42 45 48
|
3eqtr4g |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐾 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑦 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ( ( 𝑥 tpos 𝐿 𝑦 ) ‘ 𝑚 ) ) = ( ( ( 𝑥 tpos 𝐺 𝑦 ) ‘ 𝑚 ) ( 〈 ( 𝐾 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) |
| 50 |
4 7 8 9 10 12 14 15 21 49
|
isnatd |
⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐾 , tpos 𝐿 〉 𝑀 〈 𝐹 , tpos 𝐺 〉 ) ) |