| Step |
Hyp |
Ref |
Expression |
| 1 |
|
natoppf.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
natoppf.p |
⊢ 𝑃 = ( oppCat ‘ 𝐷 ) |
| 3 |
|
natoppf.n |
⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) |
| 4 |
|
natoppf.m |
⊢ 𝑀 = ( 𝑂 Nat 𝑃 ) |
| 5 |
|
natoppfb.k |
⊢ ( 𝜑 → 𝐾 = ( oppFunc ‘ 𝐹 ) ) |
| 6 |
|
natoppfb.l |
⊢ ( 𝜑 → 𝐿 = ( oppFunc ‘ 𝐺 ) ) |
| 7 |
|
natoppf2.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐹 𝑁 𝐺 ) ) |
| 8 |
3 7
|
nat1st2nd |
⊢ ( 𝜑 → 𝐴 ∈ ( 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 𝑁 〈 ( 1st ‘ 𝐺 ) , ( 2nd ‘ 𝐺 ) 〉 ) ) |
| 9 |
1 2 3 4 8
|
natoppf |
⊢ ( 𝜑 → 𝐴 ∈ ( 〈 ( 1st ‘ 𝐺 ) , tpos ( 2nd ‘ 𝐺 ) 〉 𝑀 〈 ( 1st ‘ 𝐹 ) , tpos ( 2nd ‘ 𝐹 ) 〉 ) ) |
| 10 |
3
|
natrcl |
⊢ ( 𝐴 ∈ ( 𝐹 𝑁 𝐺 ) → ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐺 ∈ ( 𝐶 Func 𝐷 ) ) ) |
| 11 |
10
|
simprd |
⊢ ( 𝐴 ∈ ( 𝐹 𝑁 𝐺 ) → 𝐺 ∈ ( 𝐶 Func 𝐷 ) ) |
| 12 |
|
oppfval2 |
⊢ ( 𝐺 ∈ ( 𝐶 Func 𝐷 ) → ( oppFunc ‘ 𝐺 ) = 〈 ( 1st ‘ 𝐺 ) , tpos ( 2nd ‘ 𝐺 ) 〉 ) |
| 13 |
7 11 12
|
3syl |
⊢ ( 𝜑 → ( oppFunc ‘ 𝐺 ) = 〈 ( 1st ‘ 𝐺 ) , tpos ( 2nd ‘ 𝐺 ) 〉 ) |
| 14 |
6 13
|
eqtrd |
⊢ ( 𝜑 → 𝐿 = 〈 ( 1st ‘ 𝐺 ) , tpos ( 2nd ‘ 𝐺 ) 〉 ) |
| 15 |
10
|
simpld |
⊢ ( 𝐴 ∈ ( 𝐹 𝑁 𝐺 ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 16 |
|
oppfval2 |
⊢ ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( oppFunc ‘ 𝐹 ) = 〈 ( 1st ‘ 𝐹 ) , tpos ( 2nd ‘ 𝐹 ) 〉 ) |
| 17 |
7 15 16
|
3syl |
⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) = 〈 ( 1st ‘ 𝐹 ) , tpos ( 2nd ‘ 𝐹 ) 〉 ) |
| 18 |
5 17
|
eqtrd |
⊢ ( 𝜑 → 𝐾 = 〈 ( 1st ‘ 𝐹 ) , tpos ( 2nd ‘ 𝐹 ) 〉 ) |
| 19 |
14 18
|
oveq12d |
⊢ ( 𝜑 → ( 𝐿 𝑀 𝐾 ) = ( 〈 ( 1st ‘ 𝐺 ) , tpos ( 2nd ‘ 𝐺 ) 〉 𝑀 〈 ( 1st ‘ 𝐹 ) , tpos ( 2nd ‘ 𝐹 ) 〉 ) ) |
| 20 |
9 19
|
eleqtrrd |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐿 𝑀 𝐾 ) ) |