| Step |
Hyp |
Ref |
Expression |
| 1 |
|
natoppf.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
natoppf.p |
⊢ 𝑃 = ( oppCat ‘ 𝐷 ) |
| 3 |
|
natoppf.n |
⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) |
| 4 |
|
natoppf.m |
⊢ 𝑀 = ( 𝑂 Nat 𝑃 ) |
| 5 |
|
natoppfb.k |
⊢ ( 𝜑 → 𝐾 = ( oppFunc ‘ 𝐹 ) ) |
| 6 |
|
natoppfb.l |
⊢ ( 𝜑 → 𝐿 = ( oppFunc ‘ 𝐺 ) ) |
| 7 |
|
natoppfb.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 8 |
|
natoppfb.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) |
| 9 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 𝑁 𝐺 ) ) → 𝐾 = ( oppFunc ‘ 𝐹 ) ) |
| 10 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 𝑁 𝐺 ) ) → 𝐿 = ( oppFunc ‘ 𝐺 ) ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 𝑁 𝐺 ) ) → 𝑥 ∈ ( 𝐹 𝑁 𝐺 ) ) |
| 12 |
1 2 3 4 9 10 11
|
natoppf2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 𝑁 𝐺 ) ) → 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) |
| 13 |
|
eqid |
⊢ ( oppCat ‘ 𝑂 ) = ( oppCat ‘ 𝑂 ) |
| 14 |
|
eqid |
⊢ ( oppCat ‘ 𝑃 ) = ( oppCat ‘ 𝑃 ) |
| 15 |
|
eqid |
⊢ ( ( oppCat ‘ 𝑂 ) Nat ( oppCat ‘ 𝑃 ) ) = ( ( oppCat ‘ 𝑂 ) Nat ( oppCat ‘ 𝑃 ) ) |
| 16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐿 = ( oppFunc ‘ 𝐺 ) ) |
| 17 |
16
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( oppFunc ‘ 𝐿 ) = ( oppFunc ‘ ( oppFunc ‘ 𝐺 ) ) ) |
| 18 |
4
|
natrcl |
⊢ ( 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) → ( 𝐿 ∈ ( 𝑂 Func 𝑃 ) ∧ 𝐾 ∈ ( 𝑂 Func 𝑃 ) ) ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( 𝐿 ∈ ( 𝑂 Func 𝑃 ) ∧ 𝐾 ∈ ( 𝑂 Func 𝑃 ) ) ) |
| 20 |
19
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐿 ∈ ( 𝑂 Func 𝑃 ) ) |
| 21 |
16 20
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( oppFunc ‘ 𝐺 ) ∈ ( 𝑂 Func 𝑃 ) ) |
| 22 |
|
relfunc |
⊢ Rel ( 𝑂 Func 𝑃 ) |
| 23 |
|
eqid |
⊢ ( oppFunc ‘ 𝐺 ) = ( oppFunc ‘ 𝐺 ) |
| 24 |
21 22 23
|
2oppf |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( oppFunc ‘ ( oppFunc ‘ 𝐺 ) ) = 𝐺 ) |
| 25 |
17 24
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐺 = ( oppFunc ‘ 𝐿 ) ) |
| 26 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐾 = ( oppFunc ‘ 𝐹 ) ) |
| 27 |
26
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( oppFunc ‘ 𝐾 ) = ( oppFunc ‘ ( oppFunc ‘ 𝐹 ) ) ) |
| 28 |
19
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐾 ∈ ( 𝑂 Func 𝑃 ) ) |
| 29 |
26 28
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( oppFunc ‘ 𝐹 ) ∈ ( 𝑂 Func 𝑃 ) ) |
| 30 |
|
eqid |
⊢ ( oppFunc ‘ 𝐹 ) = ( oppFunc ‘ 𝐹 ) |
| 31 |
29 22 30
|
2oppf |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( oppFunc ‘ ( oppFunc ‘ 𝐹 ) ) = 𝐹 ) |
| 32 |
27 31
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐹 = ( oppFunc ‘ 𝐾 ) ) |
| 33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) |
| 34 |
13 14 4 15 25 32 33
|
natoppf2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝑥 ∈ ( 𝐹 ( ( oppCat ‘ 𝑂 ) Nat ( oppCat ‘ 𝑃 ) ) 𝐺 ) ) |
| 35 |
1
|
2oppchomf |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) |
| 36 |
35
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 37 |
1
|
2oppccomf |
⊢ ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) |
| 38 |
37
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 39 |
2
|
2oppchomf |
⊢ ( Homf ‘ 𝐷 ) = ( Homf ‘ ( oppCat ‘ 𝑃 ) ) |
| 40 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( Homf ‘ 𝐷 ) = ( Homf ‘ ( oppCat ‘ 𝑃 ) ) ) |
| 41 |
2
|
2oppccomf |
⊢ ( compf ‘ 𝐷 ) = ( compf ‘ ( oppCat ‘ 𝑃 ) ) |
| 42 |
41
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( compf ‘ 𝐷 ) = ( compf ‘ ( oppCat ‘ 𝑃 ) ) ) |
| 43 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐶 ∈ 𝑉 ) |
| 44 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐷 ∈ 𝑊 ) |
| 45 |
1 2 43 44 29
|
funcoppc5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 46 |
45
|
func1st2nd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
| 47 |
46
|
funcrcl2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐶 ∈ Cat ) |
| 48 |
1
|
oppccat |
⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
| 49 |
13
|
oppccat |
⊢ ( 𝑂 ∈ Cat → ( oppCat ‘ 𝑂 ) ∈ Cat ) |
| 50 |
47 48 49
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( oppCat ‘ 𝑂 ) ∈ Cat ) |
| 51 |
46
|
funcrcl3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝐷 ∈ Cat ) |
| 52 |
2
|
oppccat |
⊢ ( 𝐷 ∈ Cat → 𝑃 ∈ Cat ) |
| 53 |
14
|
oppccat |
⊢ ( 𝑃 ∈ Cat → ( oppCat ‘ 𝑃 ) ∈ Cat ) |
| 54 |
51 52 53
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( oppCat ‘ 𝑃 ) ∈ Cat ) |
| 55 |
36 38 40 42 47 50 51 54
|
natpropd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( 𝐶 Nat 𝐷 ) = ( ( oppCat ‘ 𝑂 ) Nat ( oppCat ‘ 𝑃 ) ) ) |
| 56 |
3 55
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝑁 = ( ( oppCat ‘ 𝑂 ) Nat ( oppCat ‘ 𝑃 ) ) ) |
| 57 |
56
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → ( 𝐹 𝑁 𝐺 ) = ( 𝐹 ( ( oppCat ‘ 𝑂 ) Nat ( oppCat ‘ 𝑃 ) ) 𝐺 ) ) |
| 58 |
34 57
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) → 𝑥 ∈ ( 𝐹 𝑁 𝐺 ) ) |
| 59 |
12 58
|
impbida |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 𝑁 𝐺 ) ↔ 𝑥 ∈ ( 𝐿 𝑀 𝐾 ) ) ) |
| 60 |
59
|
eqrdv |
⊢ ( 𝜑 → ( 𝐹 𝑁 𝐺 ) = ( 𝐿 𝑀 𝐾 ) ) |