| Step |
Hyp |
Ref |
Expression |
| 1 |
|
natoppf.o |
|- O = ( oppCat ` C ) |
| 2 |
|
natoppf.p |
|- P = ( oppCat ` D ) |
| 3 |
|
natoppf.n |
|- N = ( C Nat D ) |
| 4 |
|
natoppf.m |
|- M = ( O Nat P ) |
| 5 |
|
natoppfb.k |
|- ( ph -> K = ( oppFunc ` F ) ) |
| 6 |
|
natoppfb.l |
|- ( ph -> L = ( oppFunc ` G ) ) |
| 7 |
|
natoppf2.a |
|- ( ph -> A e. ( F N G ) ) |
| 8 |
3 7
|
nat1st2nd |
|- ( ph -> A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
| 9 |
1 2 3 4 8
|
natoppf |
|- ( ph -> A e. ( <. ( 1st ` G ) , tpos ( 2nd ` G ) >. M <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) ) |
| 10 |
3
|
natrcl |
|- ( A e. ( F N G ) -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
| 11 |
10
|
simprd |
|- ( A e. ( F N G ) -> G e. ( C Func D ) ) |
| 12 |
|
oppfval2 |
|- ( G e. ( C Func D ) -> ( oppFunc ` G ) = <. ( 1st ` G ) , tpos ( 2nd ` G ) >. ) |
| 13 |
7 11 12
|
3syl |
|- ( ph -> ( oppFunc ` G ) = <. ( 1st ` G ) , tpos ( 2nd ` G ) >. ) |
| 14 |
6 13
|
eqtrd |
|- ( ph -> L = <. ( 1st ` G ) , tpos ( 2nd ` G ) >. ) |
| 15 |
10
|
simpld |
|- ( A e. ( F N G ) -> F e. ( C Func D ) ) |
| 16 |
|
oppfval2 |
|- ( F e. ( C Func D ) -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) |
| 17 |
7 15 16
|
3syl |
|- ( ph -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) |
| 18 |
5 17
|
eqtrd |
|- ( ph -> K = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) |
| 19 |
14 18
|
oveq12d |
|- ( ph -> ( L M K ) = ( <. ( 1st ` G ) , tpos ( 2nd ` G ) >. M <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) ) |
| 20 |
9 19
|
eleqtrrd |
|- ( ph -> A e. ( L M K ) ) |