Metamath Proof Explorer


Theorem natoppf2

Description: A natural transformation is natural between opposite functors. (Contributed by Zhi Wang, 18-Nov-2025)

Ref Expression
Hypotheses natoppf.o
|- O = ( oppCat ` C )
natoppf.p
|- P = ( oppCat ` D )
natoppf.n
|- N = ( C Nat D )
natoppf.m
|- M = ( O Nat P )
natoppfb.k
|- ( ph -> K = ( oppFunc ` F ) )
natoppfb.l
|- ( ph -> L = ( oppFunc ` G ) )
natoppf2.a
|- ( ph -> A e. ( F N G ) )
Assertion natoppf2
|- ( ph -> A e. ( L M K ) )

Proof

Step Hyp Ref Expression
1 natoppf.o
 |-  O = ( oppCat ` C )
2 natoppf.p
 |-  P = ( oppCat ` D )
3 natoppf.n
 |-  N = ( C Nat D )
4 natoppf.m
 |-  M = ( O Nat P )
5 natoppfb.k
 |-  ( ph -> K = ( oppFunc ` F ) )
6 natoppfb.l
 |-  ( ph -> L = ( oppFunc ` G ) )
7 natoppf2.a
 |-  ( ph -> A e. ( F N G ) )
8 3 7 nat1st2nd
 |-  ( ph -> A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) )
9 1 2 3 4 8 natoppf
 |-  ( ph -> A e. ( <. ( 1st ` G ) , tpos ( 2nd ` G ) >. M <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) )
10 3 natrcl
 |-  ( A e. ( F N G ) -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) )
11 10 simprd
 |-  ( A e. ( F N G ) -> G e. ( C Func D ) )
12 oppfval2
 |-  ( G e. ( C Func D ) -> ( oppFunc ` G ) = <. ( 1st ` G ) , tpos ( 2nd ` G ) >. )
13 7 11 12 3syl
 |-  ( ph -> ( oppFunc ` G ) = <. ( 1st ` G ) , tpos ( 2nd ` G ) >. )
14 6 13 eqtrd
 |-  ( ph -> L = <. ( 1st ` G ) , tpos ( 2nd ` G ) >. )
15 10 simpld
 |-  ( A e. ( F N G ) -> F e. ( C Func D ) )
16 oppfval2
 |-  ( F e. ( C Func D ) -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. )
17 7 15 16 3syl
 |-  ( ph -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. )
18 5 17 eqtrd
 |-  ( ph -> K = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. )
19 14 18 oveq12d
 |-  ( ph -> ( L M K ) = ( <. ( 1st ` G ) , tpos ( 2nd ` G ) >. M <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) )
20 9 19 eleqtrrd
 |-  ( ph -> A e. ( L M K ) )