Metamath Proof Explorer


Theorem natrcl2

Description: Reverse closure for a natural transformation. (Contributed by Zhi Wang, 1-Oct-2025)

Ref Expression
Hypotheses natrcl2.n 𝑁 = ( 𝐶 Nat 𝐷 )
natrcl2.a ( 𝜑𝐴 ∈ ( ⟨ 𝐹 , 𝐺𝑁𝐾 , 𝐿 ⟩ ) )
Assertion natrcl2 ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )

Proof

Step Hyp Ref Expression
1 natrcl2.n 𝑁 = ( 𝐶 Nat 𝐷 )
2 natrcl2.a ( 𝜑𝐴 ∈ ( ⟨ 𝐹 , 𝐺𝑁𝐾 , 𝐿 ⟩ ) )
3 1 natrcl ( 𝐴 ∈ ( ⟨ 𝐹 , 𝐺𝑁𝐾 , 𝐿 ⟩ ) → ( ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐶 Func 𝐷 ) ∧ ⟨ 𝐾 , 𝐿 ⟩ ∈ ( 𝐶 Func 𝐷 ) ) )
4 2 3 syl ( 𝜑 → ( ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐶 Func 𝐷 ) ∧ ⟨ 𝐾 , 𝐿 ⟩ ∈ ( 𝐶 Func 𝐷 ) ) )
5 4 simpld ( 𝜑 → ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐶 Func 𝐷 ) )
6 df-br ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐶 Func 𝐷 ) )
7 5 6 sylibr ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )