Metamath Proof Explorer


Theorem natrcl2

Description: Reverse closure for a natural transformation. (Contributed by Zhi Wang, 1-Oct-2025)

Ref Expression
Hypotheses natrcl2.n
|- N = ( C Nat D )
natrcl2.a
|- ( ph -> A e. ( <. F , G >. N <. K , L >. ) )
Assertion natrcl2
|- ( ph -> F ( C Func D ) G )

Proof

Step Hyp Ref Expression
1 natrcl2.n
 |-  N = ( C Nat D )
2 natrcl2.a
 |-  ( ph -> A e. ( <. F , G >. N <. K , L >. ) )
3 1 natrcl
 |-  ( A e. ( <. F , G >. N <. K , L >. ) -> ( <. F , G >. e. ( C Func D ) /\ <. K , L >. e. ( C Func D ) ) )
4 2 3 syl
 |-  ( ph -> ( <. F , G >. e. ( C Func D ) /\ <. K , L >. e. ( C Func D ) ) )
5 4 simpld
 |-  ( ph -> <. F , G >. e. ( C Func D ) )
6 df-br
 |-  ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) )
7 5 6 sylibr
 |-  ( ph -> F ( C Func D ) G )