Description: Reverse closure for a natural transformation. (Contributed by Zhi Wang, 1-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | natrcl2.n | |- N = ( C Nat D )  | 
					|
| natrcl2.a | |- ( ph -> A e. ( <. F , G >. N <. K , L >. ) )  | 
					||
| Assertion | natrcl2 | |- ( ph -> F ( C Func D ) G )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | natrcl2.n | |- N = ( C Nat D )  | 
						|
| 2 | natrcl2.a | |- ( ph -> A e. ( <. F , G >. N <. K , L >. ) )  | 
						|
| 3 | 1 | natrcl | |- ( A e. ( <. F , G >. N <. K , L >. ) -> ( <. F , G >. e. ( C Func D ) /\ <. K , L >. e. ( C Func D ) ) )  | 
						
| 4 | 2 3 | syl | |- ( ph -> ( <. F , G >. e. ( C Func D ) /\ <. K , L >. e. ( C Func D ) ) )  | 
						
| 5 | 4 | simpld | |- ( ph -> <. F , G >. e. ( C Func D ) )  | 
						
| 6 | df-br | |- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) )  | 
						|
| 7 | 5 6 | sylibr | |- ( ph -> F ( C Func D ) G )  |