| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isnatd.1 |
⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) |
| 2 |
|
isnatd.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
isnatd.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 4 |
|
isnatd.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
| 5 |
|
isnatd.o |
⊢ · = ( comp ‘ 𝐷 ) |
| 6 |
|
isnatd.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 7 |
|
isnatd.g |
⊢ ( 𝜑 → 𝐾 ( 𝐶 Func 𝐷 ) 𝐿 ) |
| 8 |
|
isnatd.a |
⊢ ( 𝜑 → 𝐴 Fn 𝐵 ) |
| 9 |
|
isnatd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ‘ 𝑥 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) |
| 10 |
|
isnatd.3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ) → ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) |
| 11 |
|
dffn5 |
⊢ ( 𝐴 Fn 𝐵 ↔ 𝐴 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 ‘ 𝑥 ) ) ) |
| 12 |
8 11
|
sylib |
⊢ ( 𝜑 → 𝐴 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 ‘ 𝑥 ) ) ) |
| 13 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
| 14 |
13
|
mptex |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 ‘ 𝑥 ) ) ∈ V |
| 15 |
12 14
|
eqeltrdi |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 16 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 𝐴 ‘ 𝑥 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) |
| 17 |
|
elixp2 |
⊢ ( 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ↔ ( 𝐴 ∈ V ∧ 𝐴 Fn 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝐴 ‘ 𝑥 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) ) |
| 18 |
15 8 16 17
|
syl3anbrc |
⊢ ( 𝜑 → 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) |
| 19 |
10
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) |
| 20 |
19
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) |
| 21 |
1 2 3 4 5 6 7
|
isnat |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ↔ ( 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) ) |
| 22 |
18 20 21
|
mpbir2and |
⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) |