| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isnatd.1 | 
							⊢ 𝑁  =  ( 𝐶  Nat  𝐷 )  | 
						
						
							| 2 | 
							
								
							 | 
							isnatd.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐶 )  | 
						
						
							| 3 | 
							
								
							 | 
							isnatd.h | 
							⊢ 𝐻  =  ( Hom  ‘ 𝐶 )  | 
						
						
							| 4 | 
							
								
							 | 
							isnatd.j | 
							⊢ 𝐽  =  ( Hom  ‘ 𝐷 )  | 
						
						
							| 5 | 
							
								
							 | 
							isnatd.o | 
							⊢  ·   =  ( comp ‘ 𝐷 )  | 
						
						
							| 6 | 
							
								
							 | 
							isnatd.f | 
							⊢ ( 𝜑  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 )  | 
						
						
							| 7 | 
							
								
							 | 
							isnatd.g | 
							⊢ ( 𝜑  →  𝐾 ( 𝐶  Func  𝐷 ) 𝐿 )  | 
						
						
							| 8 | 
							
								
							 | 
							isnatd.a | 
							⊢ ( 𝜑  →  𝐴  Fn  𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							isnatd.2 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝐴 ‘ 𝑥 )  ∈  ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							isnatd.3 | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ℎ  ∈  ( 𝑥 𝐻 𝑦 ) )  →  ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							dffn5 | 
							⊢ ( 𝐴  Fn  𝐵  ↔  𝐴  =  ( 𝑥  ∈  𝐵  ↦  ( 𝐴 ‘ 𝑥 ) ) )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							sylib | 
							⊢ ( 𝜑  →  𝐴  =  ( 𝑥  ∈  𝐵  ↦  ( 𝐴 ‘ 𝑥 ) ) )  | 
						
						
							| 13 | 
							
								2
							 | 
							fvexi | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 14 | 
							
								13
							 | 
							mptex | 
							⊢ ( 𝑥  ∈  𝐵  ↦  ( 𝐴 ‘ 𝑥 ) )  ∈  V  | 
						
						
							| 15 | 
							
								12 14
							 | 
							eqeltrdi | 
							⊢ ( 𝜑  →  𝐴  ∈  V )  | 
						
						
							| 16 | 
							
								9
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ( 𝐴 ‘ 𝑥 )  ∈  ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							elixp2 | 
							⊢ ( 𝐴  ∈  X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  ↔  ( 𝐴  ∈  V  ∧  𝐴  Fn  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( 𝐴 ‘ 𝑥 )  ∈  ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) )  | 
						
						
							| 18 | 
							
								15 8 16 17
							 | 
							syl3anbrc | 
							⊢ ( 𝜑  →  𝐴  ∈  X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) )  | 
						
						
							| 19 | 
							
								10
							 | 
							ralrimiva | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							ralrimivva | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) )  | 
						
						
							| 21 | 
							
								1 2 3 4 5 6 7
							 | 
							isnat | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  ( 〈 𝐹 ,  𝐺 〉 𝑁 〈 𝐾 ,  𝐿 〉 )  ↔  ( 𝐴  ∈  X 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ ℎ  ∈  ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) )  =  ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐾 ‘ 𝑥 ) 〉  ·  ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) )  | 
						
						
							| 22 | 
							
								18 20 21
							 | 
							mpbir2and | 
							⊢ ( 𝜑  →  𝐴  ∈  ( 〈 𝐹 ,  𝐺 〉 𝑁 〈 𝐾 ,  𝐿 〉 ) )  |