Metamath Proof Explorer


Theorem 2arymaptfv

Description: The value of the mapping of binary (endo)functions. (Contributed by AV, 21-May-2024)

Ref Expression
Hypothesis 2arymaptf.h
|- H = ( h e. ( 2 -aryF X ) |-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) )
Assertion 2arymaptfv
|- ( F e. ( 2 -aryF X ) -> ( H ` F ) = ( x e. X , y e. X |-> ( F ` { <. 0 , x >. , <. 1 , y >. } ) ) )

Proof

Step Hyp Ref Expression
1 2arymaptf.h
 |-  H = ( h e. ( 2 -aryF X ) |-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) )
2 fveq1
 |-  ( h = F -> ( h ` { <. 0 , x >. , <. 1 , y >. } ) = ( F ` { <. 0 , x >. , <. 1 , y >. } ) )
3 2 mpoeq3dv
 |-  ( h = F -> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) = ( x e. X , y e. X |-> ( F ` { <. 0 , x >. , <. 1 , y >. } ) ) )
4 eqid
 |-  ( 0 ..^ 2 ) = ( 0 ..^ 2 )
5 4 naryrcl
 |-  ( h e. ( 2 -aryF X ) -> ( 2 e. NN0 /\ X e. _V ) )
6 mpoexga
 |-  ( ( X e. _V /\ X e. _V ) -> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) e. _V )
7 6 anidms
 |-  ( X e. _V -> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) e. _V )
8 5 7 simpl2im
 |-  ( h e. ( 2 -aryF X ) -> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) e. _V )
9 3 1 8 fvmpt3
 |-  ( F e. ( 2 -aryF X ) -> ( H ` F ) = ( x e. X , y e. X |-> ( F ` { <. 0 , x >. , <. 1 , y >. } ) ) )