| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2arymaptf.h |
|- H = ( h e. ( 2 -aryF X ) |-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) ) |
| 2 |
|
fveq1 |
|- ( h = F -> ( h ` { <. 0 , x >. , <. 1 , y >. } ) = ( F ` { <. 0 , x >. , <. 1 , y >. } ) ) |
| 3 |
2
|
mpoeq3dv |
|- ( h = F -> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) = ( x e. X , y e. X |-> ( F ` { <. 0 , x >. , <. 1 , y >. } ) ) ) |
| 4 |
|
eqid |
|- ( 0 ..^ 2 ) = ( 0 ..^ 2 ) |
| 5 |
4
|
naryrcl |
|- ( h e. ( 2 -aryF X ) -> ( 2 e. NN0 /\ X e. _V ) ) |
| 6 |
|
mpoexga |
|- ( ( X e. _V /\ X e. _V ) -> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) e. _V ) |
| 7 |
6
|
anidms |
|- ( X e. _V -> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) e. _V ) |
| 8 |
5 7
|
simpl2im |
|- ( h e. ( 2 -aryF X ) -> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) e. _V ) |
| 9 |
3 1 8
|
fvmpt3 |
|- ( F e. ( 2 -aryF X ) -> ( H ` F ) = ( x e. X , y e. X |-> ( F ` { <. 0 , x >. , <. 1 , y >. } ) ) ) |