Metamath Proof Explorer


Theorem 2arymaptfv

Description: The value of the mapping of binary (endo)functions. (Contributed by AV, 21-May-2024)

Ref Expression
Hypothesis 2arymaptf.h No typesetting found for |- H = ( h e. ( 2 -aryF X ) |-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) ) with typecode |-
Assertion 2arymaptfv Could not format assertion : No typesetting found for |- ( F e. ( 2 -aryF X ) -> ( H ` F ) = ( x e. X , y e. X |-> ( F ` { <. 0 , x >. , <. 1 , y >. } ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 2arymaptf.h Could not format H = ( h e. ( 2 -aryF X ) |-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) ) : No typesetting found for |- H = ( h e. ( 2 -aryF X ) |-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) ) with typecode |-
2 fveq1 h = F h 0 x 1 y = F 0 x 1 y
3 2 mpoeq3dv h = F x X , y X h 0 x 1 y = x X , y X F 0 x 1 y
4 eqid 0 ..^ 2 = 0 ..^ 2
5 4 naryrcl Could not format ( h e. ( 2 -aryF X ) -> ( 2 e. NN0 /\ X e. _V ) ) : No typesetting found for |- ( h e. ( 2 -aryF X ) -> ( 2 e. NN0 /\ X e. _V ) ) with typecode |-
6 mpoexga X V X V x X , y X h 0 x 1 y V
7 6 anidms X V x X , y X h 0 x 1 y V
8 5 7 simpl2im Could not format ( h e. ( 2 -aryF X ) -> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) e. _V ) : No typesetting found for |- ( h e. ( 2 -aryF X ) -> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) e. _V ) with typecode |-
9 3 1 8 fvmpt3 Could not format ( F e. ( 2 -aryF X ) -> ( H ` F ) = ( x e. X , y e. X |-> ( F ` { <. 0 , x >. , <. 1 , y >. } ) ) ) : No typesetting found for |- ( F e. ( 2 -aryF X ) -> ( H ` F ) = ( x e. X , y e. X |-> ( F ` { <. 0 , x >. , <. 1 , y >. } ) ) ) with typecode |-