Metamath Proof Explorer


Theorem 2arymaptfv

Description: The value of the mapping of binary (endo)functions. (Contributed by AV, 21-May-2024)

Ref Expression
Hypothesis 2arymaptf.h H = h 2 -aryF X x X , y X h 0 x 1 y
Assertion 2arymaptfv F 2 -aryF X H F = x X , y X F 0 x 1 y

Proof

Step Hyp Ref Expression
1 2arymaptf.h H = h 2 -aryF X x X , y X h 0 x 1 y
2 fveq1 h = F h 0 x 1 y = F 0 x 1 y
3 2 mpoeq3dv h = F x X , y X h 0 x 1 y = x X , y X F 0 x 1 y
4 eqid 0 ..^ 2 = 0 ..^ 2
5 4 naryrcl h 2 -aryF X 2 0 X V
6 mpoexga X V X V x X , y X h 0 x 1 y V
7 6 anidms X V x X , y X h 0 x 1 y V
8 5 7 simpl2im h 2 -aryF X x X , y X h 0 x 1 y V
9 3 1 8 fvmpt3 F 2 -aryF X H F = x X , y X F 0 x 1 y