Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Complexity theory
N-ary functions
2arymaptfv
Next ⟩
2arymaptf
Metamath Proof Explorer
Ascii
Unicode
Theorem
2arymaptfv
Description:
The value of the mapping of binary (endo)functions.
(Contributed by
AV
, 21-May-2024)
Ref
Expression
Hypothesis
2arymaptf.h
⊢
H
=
h
∈
2
-aryF
X
⟼
x
∈
X
,
y
∈
X
⟼
h
⁡
0
x
1
y
Assertion
2arymaptfv
⊢
F
∈
2
-aryF
X
→
H
⁡
F
=
x
∈
X
,
y
∈
X
⟼
F
⁡
0
x
1
y
Proof
Step
Hyp
Ref
Expression
1
2arymaptf.h
⊢
H
=
h
∈
2
-aryF
X
⟼
x
∈
X
,
y
∈
X
⟼
h
⁡
0
x
1
y
2
fveq1
⊢
h
=
F
→
h
⁡
0
x
1
y
=
F
⁡
0
x
1
y
3
2
mpoeq3dv
⊢
h
=
F
→
x
∈
X
,
y
∈
X
⟼
h
⁡
0
x
1
y
=
x
∈
X
,
y
∈
X
⟼
F
⁡
0
x
1
y
4
eqid
⊢
0
..^
2
=
0
..^
2
5
4
naryrcl
⊢
h
∈
2
-aryF
X
→
2
∈
ℕ
0
∧
X
∈
V
6
mpoexga
⊢
X
∈
V
∧
X
∈
V
→
x
∈
X
,
y
∈
X
⟼
h
⁡
0
x
1
y
∈
V
7
6
anidms
⊢
X
∈
V
→
x
∈
X
,
y
∈
X
⟼
h
⁡
0
x
1
y
∈
V
8
5
7
simpl2im
⊢
h
∈
2
-aryF
X
→
x
∈
X
,
y
∈
X
⟼
h
⁡
0
x
1
y
∈
V
9
3
1
8
fvmpt3
⊢
F
∈
2
-aryF
X
→
H
⁡
F
=
x
∈
X
,
y
∈
X
⟼
F
⁡
0
x
1
y