Metamath Proof Explorer


Theorem 2arymaptf

Description: The mapping of binary (endo)functions is a function into the set of binary operations. (Contributed by AV, 21-May-2024)

Ref Expression
Hypothesis 2arymaptf.h No typesetting found for |- H = ( h e. ( 2 -aryF X ) |-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) ) with typecode |-
Assertion 2arymaptf Could not format assertion : No typesetting found for |- ( X e. V -> H : ( 2 -aryF X ) --> ( X ^m ( X X. X ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 2arymaptf.h Could not format H = ( h e. ( 2 -aryF X ) |-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) ) : No typesetting found for |- H = ( h e. ( 2 -aryF X ) |-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) ) with typecode |-
2 simplr Could not format ( ( ( X e. V /\ h e. ( 2 -aryF X ) ) /\ z e. ( X X. X ) ) -> h e. ( 2 -aryF X ) ) : No typesetting found for |- ( ( ( X e. V /\ h e. ( 2 -aryF X ) ) /\ z e. ( X X. X ) ) -> h e. ( 2 -aryF X ) ) with typecode |-
3 xp1st z X × X 1 st z X
4 3 adantl Could not format ( ( ( X e. V /\ h e. ( 2 -aryF X ) ) /\ z e. ( X X. X ) ) -> ( 1st ` z ) e. X ) : No typesetting found for |- ( ( ( X e. V /\ h e. ( 2 -aryF X ) ) /\ z e. ( X X. X ) ) -> ( 1st ` z ) e. X ) with typecode |-
5 xp2nd z X × X 2 nd z X
6 5 adantl Could not format ( ( ( X e. V /\ h e. ( 2 -aryF X ) ) /\ z e. ( X X. X ) ) -> ( 2nd ` z ) e. X ) : No typesetting found for |- ( ( ( X e. V /\ h e. ( 2 -aryF X ) ) /\ z e. ( X X. X ) ) -> ( 2nd ` z ) e. X ) with typecode |-
7 fv2arycl Could not format ( ( h e. ( 2 -aryF X ) /\ ( 1st ` z ) e. X /\ ( 2nd ` z ) e. X ) -> ( h ` { <. 0 , ( 1st ` z ) >. , <. 1 , ( 2nd ` z ) >. } ) e. X ) : No typesetting found for |- ( ( h e. ( 2 -aryF X ) /\ ( 1st ` z ) e. X /\ ( 2nd ` z ) e. X ) -> ( h ` { <. 0 , ( 1st ` z ) >. , <. 1 , ( 2nd ` z ) >. } ) e. X ) with typecode |-
8 2 4 6 7 syl3anc Could not format ( ( ( X e. V /\ h e. ( 2 -aryF X ) ) /\ z e. ( X X. X ) ) -> ( h ` { <. 0 , ( 1st ` z ) >. , <. 1 , ( 2nd ` z ) >. } ) e. X ) : No typesetting found for |- ( ( ( X e. V /\ h e. ( 2 -aryF X ) ) /\ z e. ( X X. X ) ) -> ( h ` { <. 0 , ( 1st ` z ) >. , <. 1 , ( 2nd ` z ) >. } ) e. X ) with typecode |-
9 vex x V
10 vex y V
11 9 10 op1std z = x y 1 st z = x
12 11 opeq2d z = x y 0 1 st z = 0 x
13 9 10 op2ndd z = x y 2 nd z = y
14 13 opeq2d z = x y 1 2 nd z = 1 y
15 12 14 preq12d z = x y 0 1 st z 1 2 nd z = 0 x 1 y
16 15 fveq2d z = x y h 0 1 st z 1 2 nd z = h 0 x 1 y
17 16 mpompt z X × X h 0 1 st z 1 2 nd z = x X , y X h 0 x 1 y
18 17 eqcomi x X , y X h 0 x 1 y = z X × X h 0 1 st z 1 2 nd z
19 8 18 fmptd Could not format ( ( X e. V /\ h e. ( 2 -aryF X ) ) -> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) : ( X X. X ) --> X ) : No typesetting found for |- ( ( X e. V /\ h e. ( 2 -aryF X ) ) -> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) : ( X X. X ) --> X ) with typecode |-
20 sqxpexg X V X × X V
21 elmapg X V X × X V x X , y X h 0 x 1 y X X × X x X , y X h 0 x 1 y : X × X X
22 20 21 mpdan X V x X , y X h 0 x 1 y X X × X x X , y X h 0 x 1 y : X × X X
23 22 adantr Could not format ( ( X e. V /\ h e. ( 2 -aryF X ) ) -> ( ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) e. ( X ^m ( X X. X ) ) <-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) : ( X X. X ) --> X ) ) : No typesetting found for |- ( ( X e. V /\ h e. ( 2 -aryF X ) ) -> ( ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) e. ( X ^m ( X X. X ) ) <-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) : ( X X. X ) --> X ) ) with typecode |-
24 19 23 mpbird Could not format ( ( X e. V /\ h e. ( 2 -aryF X ) ) -> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) e. ( X ^m ( X X. X ) ) ) : No typesetting found for |- ( ( X e. V /\ h e. ( 2 -aryF X ) ) -> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) e. ( X ^m ( X X. X ) ) ) with typecode |-
25 24 1 fmptd Could not format ( X e. V -> H : ( 2 -aryF X ) --> ( X ^m ( X X. X ) ) ) : No typesetting found for |- ( X e. V -> H : ( 2 -aryF X ) --> ( X ^m ( X X. X ) ) ) with typecode |-