Metamath Proof Explorer


Theorem 2arymaptf

Description: The mapping of binary (endo)functions is a function into the set of binary operations. (Contributed by AV, 21-May-2024)

Ref Expression
Hypothesis 2arymaptf.h H = h 2 -aryF X x X , y X h 0 x 1 y
Assertion 2arymaptf X V H : 2 -aryF X X X × X

Proof

Step Hyp Ref Expression
1 2arymaptf.h H = h 2 -aryF X x X , y X h 0 x 1 y
2 simplr X V h 2 -aryF X z X × X h 2 -aryF X
3 xp1st z X × X 1 st z X
4 3 adantl X V h 2 -aryF X z X × X 1 st z X
5 xp2nd z X × X 2 nd z X
6 5 adantl X V h 2 -aryF X z X × X 2 nd z X
7 fv2arycl h 2 -aryF X 1 st z X 2 nd z X h 0 1 st z 1 2 nd z X
8 2 4 6 7 syl3anc X V h 2 -aryF X z X × X h 0 1 st z 1 2 nd z X
9 vex x V
10 vex y V
11 9 10 op1std z = x y 1 st z = x
12 11 opeq2d z = x y 0 1 st z = 0 x
13 9 10 op2ndd z = x y 2 nd z = y
14 13 opeq2d z = x y 1 2 nd z = 1 y
15 12 14 preq12d z = x y 0 1 st z 1 2 nd z = 0 x 1 y
16 15 fveq2d z = x y h 0 1 st z 1 2 nd z = h 0 x 1 y
17 16 mpompt z X × X h 0 1 st z 1 2 nd z = x X , y X h 0 x 1 y
18 17 eqcomi x X , y X h 0 x 1 y = z X × X h 0 1 st z 1 2 nd z
19 8 18 fmptd X V h 2 -aryF X x X , y X h 0 x 1 y : X × X X
20 sqxpexg X V X × X V
21 elmapg X V X × X V x X , y X h 0 x 1 y X X × X x X , y X h 0 x 1 y : X × X X
22 20 21 mpdan X V x X , y X h 0 x 1 y X X × X x X , y X h 0 x 1 y : X × X X
23 22 adantr X V h 2 -aryF X x X , y X h 0 x 1 y X X × X x X , y X h 0 x 1 y : X × X X
24 19 23 mpbird X V h 2 -aryF X x X , y X h 0 x 1 y X X × X
25 24 1 fmptd X V H : 2 -aryF X X X × X