Metamath Proof Explorer


Theorem fv2arycl

Description: Closure of a binary (endo)function. (Contributed by AV, 20-May-2024)

Ref Expression
Assertion fv2arycl G 2 -aryF X A X B X G 0 A 1 B X

Proof

Step Hyp Ref Expression
1 eqid 0 ..^ 2 = 0 ..^ 2
2 1 naryrcl G 2 -aryF X 2 0 X V
3 2aryfvalel X V G 2 -aryF X G : X 0 1 X
4 simp2 X V G : X 0 1 X A X B X G : X 0 1 X
5 c0ex 0 V
6 1ex 1 V
7 0ne1 0 1
8 5 6 7 3pm3.2i 0 V 1 V 0 1
9 8 a1i X V G : X 0 1 X A X B X 0 V 1 V 0 1
10 fprmappr X V 0 V 1 V 0 1 A X B X 0 A 1 B X 0 1
11 9 10 syld3an2 X V G : X 0 1 X A X B X 0 A 1 B X 0 1
12 4 11 ffvelcdmd X V G : X 0 1 X A X B X G 0 A 1 B X
13 12 3exp X V G : X 0 1 X A X B X G 0 A 1 B X
14 3 13 sylbid X V G 2 -aryF X A X B X G 0 A 1 B X
15 14 adantl 2 0 X V G 2 -aryF X A X B X G 0 A 1 B X
16 2 15 mpcom G 2 -aryF X A X B X G 0 A 1 B X
17 16 3impib G 2 -aryF X A X B X G 0 A 1 B X