Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Complexity theory
N-ary functions
fv2arycl
Next ⟩
2arympt
Metamath Proof Explorer
Ascii
Unicode
Theorem
fv2arycl
Description:
Closure of a binary (endo)function.
(Contributed by
AV
, 20-May-2024)
Ref
Expression
Assertion
fv2arycl
⊢
G
∈
2
-aryF
X
∧
A
∈
X
∧
B
∈
X
→
G
⁡
0
A
1
B
∈
X
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
0
..^
2
=
0
..^
2
2
1
naryrcl
⊢
G
∈
2
-aryF
X
→
2
∈
ℕ
0
∧
X
∈
V
3
2aryfvalel
⊢
X
∈
V
→
G
∈
2
-aryF
X
↔
G
:
X
0
1
⟶
X
4
simp2
⊢
X
∈
V
∧
G
:
X
0
1
⟶
X
∧
A
∈
X
∧
B
∈
X
→
G
:
X
0
1
⟶
X
5
c0ex
⊢
0
∈
V
6
1ex
⊢
1
∈
V
7
0ne1
⊢
0
≠
1
8
5
6
7
3pm3.2i
⊢
0
∈
V
∧
1
∈
V
∧
0
≠
1
9
8
a1i
⊢
X
∈
V
∧
G
:
X
0
1
⟶
X
∧
A
∈
X
∧
B
∈
X
→
0
∈
V
∧
1
∈
V
∧
0
≠
1
10
fprmappr
⊢
X
∈
V
∧
0
∈
V
∧
1
∈
V
∧
0
≠
1
∧
A
∈
X
∧
B
∈
X
→
0
A
1
B
∈
X
0
1
11
9
10
syld3an2
⊢
X
∈
V
∧
G
:
X
0
1
⟶
X
∧
A
∈
X
∧
B
∈
X
→
0
A
1
B
∈
X
0
1
12
4
11
ffvelcdmd
⊢
X
∈
V
∧
G
:
X
0
1
⟶
X
∧
A
∈
X
∧
B
∈
X
→
G
⁡
0
A
1
B
∈
X
13
12
3exp
⊢
X
∈
V
→
G
:
X
0
1
⟶
X
→
A
∈
X
∧
B
∈
X
→
G
⁡
0
A
1
B
∈
X
14
3
13
sylbid
⊢
X
∈
V
→
G
∈
2
-aryF
X
→
A
∈
X
∧
B
∈
X
→
G
⁡
0
A
1
B
∈
X
15
14
adantl
⊢
2
∈
ℕ
0
∧
X
∈
V
→
G
∈
2
-aryF
X
→
A
∈
X
∧
B
∈
X
→
G
⁡
0
A
1
B
∈
X
16
2
15
mpcom
⊢
G
∈
2
-aryF
X
→
A
∈
X
∧
B
∈
X
→
G
⁡
0
A
1
B
∈
X
17
16
3impib
⊢
G
∈
2
-aryF
X
∧
A
∈
X
∧
B
∈
X
→
G
⁡
0
A
1
B
∈
X