Metamath Proof Explorer


Theorem naryrcl

Description: Reverse closure for n-ary (endo)functions. (Contributed by AV, 14-May-2024)

Ref Expression
Hypothesis naryfval.i I = 0 ..^ N
Assertion naryrcl F N -aryF X N 0 X V

Proof

Step Hyp Ref Expression
1 naryfval.i I = 0 ..^ N
2 df-naryf -aryF = x 0 , n V n n 0 ..^ x
3 2 elmpocl F N -aryF X N 0 X V