Metamath Proof Explorer


Theorem naryfvalelfv

Description: The value of an n-ary (endo)function on a set X is an element of X . (Contributed by AV, 14-May-2024)

Ref Expression
Hypothesis naryfval.i I = 0 ..^ N
Assertion naryfvalelfv F N -aryF X A : I X F A X

Proof

Step Hyp Ref Expression
1 naryfval.i I = 0 ..^ N
2 1 naryrcl F N -aryF X N 0 X V
3 1 naryfvalel N 0 X V F N -aryF X F : X I X
4 3 biimpd N 0 X V F N -aryF X F : X I X
5 2 4 mpcom F N -aryF X F : X I X
6 5 adantr F N -aryF X A : I X F : X I X
7 simpr N 0 X V X V
8 1 ovexi I V
9 8 a1i N 0 X V I V
10 7 9 elmapd N 0 X V A X I A : I X
11 10 biimpar N 0 X V A : I X A X I
12 2 11 sylan F N -aryF X A : I X A X I
13 6 12 ffvelcdmd F N -aryF X A : I X F A X