Step |
Hyp |
Ref |
Expression |
1 |
|
naryfval.i |
⊢ 𝐼 = ( 0 ..^ 𝑁 ) |
2 |
1
|
naryrcl |
⊢ ( 𝐹 ∈ ( 𝑁 -aryF 𝑋 ) → ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V ) ) |
3 |
1
|
naryfvalel |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V ) → ( 𝐹 ∈ ( 𝑁 -aryF 𝑋 ) ↔ 𝐹 : ( 𝑋 ↑m 𝐼 ) ⟶ 𝑋 ) ) |
4 |
3
|
biimpd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V ) → ( 𝐹 ∈ ( 𝑁 -aryF 𝑋 ) → 𝐹 : ( 𝑋 ↑m 𝐼 ) ⟶ 𝑋 ) ) |
5 |
2 4
|
mpcom |
⊢ ( 𝐹 ∈ ( 𝑁 -aryF 𝑋 ) → 𝐹 : ( 𝑋 ↑m 𝐼 ) ⟶ 𝑋 ) |
6 |
5
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑁 -aryF 𝑋 ) ∧ 𝐴 : 𝐼 ⟶ 𝑋 ) → 𝐹 : ( 𝑋 ↑m 𝐼 ) ⟶ 𝑋 ) |
7 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V ) → 𝑋 ∈ V ) |
8 |
1
|
ovexi |
⊢ 𝐼 ∈ V |
9 |
8
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V ) → 𝐼 ∈ V ) |
10 |
7 9
|
elmapd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V ) → ( 𝐴 ∈ ( 𝑋 ↑m 𝐼 ) ↔ 𝐴 : 𝐼 ⟶ 𝑋 ) ) |
11 |
10
|
biimpar |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V ) ∧ 𝐴 : 𝐼 ⟶ 𝑋 ) → 𝐴 ∈ ( 𝑋 ↑m 𝐼 ) ) |
12 |
2 11
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝑁 -aryF 𝑋 ) ∧ 𝐴 : 𝐼 ⟶ 𝑋 ) → 𝐴 ∈ ( 𝑋 ↑m 𝐼 ) ) |
13 |
6 12
|
ffvelrnd |
⊢ ( ( 𝐹 ∈ ( 𝑁 -aryF 𝑋 ) ∧ 𝐴 : 𝐼 ⟶ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑋 ) |