Metamath Proof Explorer


Theorem naryfvalelfv

Description: The value of an n-ary (endo)function on a set X is an element of X . (Contributed by AV, 14-May-2024)

Ref Expression
Hypothesis naryfval.i 𝐼 = ( 0 ..^ 𝑁 )
Assertion naryfvalelfv ( ( 𝐹 ∈ ( 𝑁 -aryF 𝑋 ) ∧ 𝐴 : 𝐼𝑋 ) → ( 𝐹𝐴 ) ∈ 𝑋 )

Proof

Step Hyp Ref Expression
1 naryfval.i 𝐼 = ( 0 ..^ 𝑁 )
2 1 naryrcl ( 𝐹 ∈ ( 𝑁 -aryF 𝑋 ) → ( 𝑁 ∈ ℕ0𝑋 ∈ V ) )
3 1 naryfvalel ( ( 𝑁 ∈ ℕ0𝑋 ∈ V ) → ( 𝐹 ∈ ( 𝑁 -aryF 𝑋 ) ↔ 𝐹 : ( 𝑋m 𝐼 ) ⟶ 𝑋 ) )
4 3 biimpd ( ( 𝑁 ∈ ℕ0𝑋 ∈ V ) → ( 𝐹 ∈ ( 𝑁 -aryF 𝑋 ) → 𝐹 : ( 𝑋m 𝐼 ) ⟶ 𝑋 ) )
5 2 4 mpcom ( 𝐹 ∈ ( 𝑁 -aryF 𝑋 ) → 𝐹 : ( 𝑋m 𝐼 ) ⟶ 𝑋 )
6 5 adantr ( ( 𝐹 ∈ ( 𝑁 -aryF 𝑋 ) ∧ 𝐴 : 𝐼𝑋 ) → 𝐹 : ( 𝑋m 𝐼 ) ⟶ 𝑋 )
7 simpr ( ( 𝑁 ∈ ℕ0𝑋 ∈ V ) → 𝑋 ∈ V )
8 1 ovexi 𝐼 ∈ V
9 8 a1i ( ( 𝑁 ∈ ℕ0𝑋 ∈ V ) → 𝐼 ∈ V )
10 7 9 elmapd ( ( 𝑁 ∈ ℕ0𝑋 ∈ V ) → ( 𝐴 ∈ ( 𝑋m 𝐼 ) ↔ 𝐴 : 𝐼𝑋 ) )
11 10 biimpar ( ( ( 𝑁 ∈ ℕ0𝑋 ∈ V ) ∧ 𝐴 : 𝐼𝑋 ) → 𝐴 ∈ ( 𝑋m 𝐼 ) )
12 2 11 sylan ( ( 𝐹 ∈ ( 𝑁 -aryF 𝑋 ) ∧ 𝐴 : 𝐼𝑋 ) → 𝐴 ∈ ( 𝑋m 𝐼 ) )
13 6 12 ffvelrnd ( ( 𝐹 ∈ ( 𝑁 -aryF 𝑋 ) ∧ 𝐴 : 𝐼𝑋 ) → ( 𝐹𝐴 ) ∈ 𝑋 )