Metamath Proof Explorer


Theorem naryfvalelfv

Description: The value of an n-ary (endo)function on a set X is an element of X . (Contributed by AV, 14-May-2024)

Ref Expression
Hypothesis naryfval.i
|- I = ( 0 ..^ N )
Assertion naryfvalelfv
|- ( ( F e. ( N -aryF X ) /\ A : I --> X ) -> ( F ` A ) e. X )

Proof

Step Hyp Ref Expression
1 naryfval.i
 |-  I = ( 0 ..^ N )
2 1 naryrcl
 |-  ( F e. ( N -aryF X ) -> ( N e. NN0 /\ X e. _V ) )
3 1 naryfvalel
 |-  ( ( N e. NN0 /\ X e. _V ) -> ( F e. ( N -aryF X ) <-> F : ( X ^m I ) --> X ) )
4 3 biimpd
 |-  ( ( N e. NN0 /\ X e. _V ) -> ( F e. ( N -aryF X ) -> F : ( X ^m I ) --> X ) )
5 2 4 mpcom
 |-  ( F e. ( N -aryF X ) -> F : ( X ^m I ) --> X )
6 5 adantr
 |-  ( ( F e. ( N -aryF X ) /\ A : I --> X ) -> F : ( X ^m I ) --> X )
7 simpr
 |-  ( ( N e. NN0 /\ X e. _V ) -> X e. _V )
8 1 ovexi
 |-  I e. _V
9 8 a1i
 |-  ( ( N e. NN0 /\ X e. _V ) -> I e. _V )
10 7 9 elmapd
 |-  ( ( N e. NN0 /\ X e. _V ) -> ( A e. ( X ^m I ) <-> A : I --> X ) )
11 10 biimpar
 |-  ( ( ( N e. NN0 /\ X e. _V ) /\ A : I --> X ) -> A e. ( X ^m I ) )
12 2 11 sylan
 |-  ( ( F e. ( N -aryF X ) /\ A : I --> X ) -> A e. ( X ^m I ) )
13 6 12 ffvelrnd
 |-  ( ( F e. ( N -aryF X ) /\ A : I --> X ) -> ( F ` A ) e. X )