| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( 0 ..^ N ) = ( 0 ..^ N ) | 
						
							| 2 | 1 | naryfvalel |  |-  ( ( N e. NN0 /\ X e. V ) -> ( F e. ( N -aryF X ) <-> F : ( X ^m ( 0 ..^ N ) ) --> X ) ) | 
						
							| 3 |  | wrdnval |  |-  ( ( X e. V /\ N e. NN0 ) -> { w e. Word X | ( # ` w ) = N } = ( X ^m ( 0 ..^ N ) ) ) | 
						
							| 4 | 3 | ancoms |  |-  ( ( N e. NN0 /\ X e. V ) -> { w e. Word X | ( # ` w ) = N } = ( X ^m ( 0 ..^ N ) ) ) | 
						
							| 5 | 4 | feq2d |  |-  ( ( N e. NN0 /\ X e. V ) -> ( F : { w e. Word X | ( # ` w ) = N } --> X <-> F : ( X ^m ( 0 ..^ N ) ) --> X ) ) | 
						
							| 6 | 2 5 | bitr4d |  |-  ( ( N e. NN0 /\ X e. V ) -> ( F e. ( N -aryF X ) <-> F : { w e. Word X | ( # ` w ) = N } --> X ) ) |