Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
2 |
1
|
naryfvalel |
|- ( ( N e. NN0 /\ X e. V ) -> ( F e. ( N -aryF X ) <-> F : ( X ^m ( 0 ..^ N ) ) --> X ) ) |
3 |
|
wrdnval |
|- ( ( X e. V /\ N e. NN0 ) -> { w e. Word X | ( # ` w ) = N } = ( X ^m ( 0 ..^ N ) ) ) |
4 |
3
|
ancoms |
|- ( ( N e. NN0 /\ X e. V ) -> { w e. Word X | ( # ` w ) = N } = ( X ^m ( 0 ..^ N ) ) ) |
5 |
4
|
feq2d |
|- ( ( N e. NN0 /\ X e. V ) -> ( F : { w e. Word X | ( # ` w ) = N } --> X <-> F : ( X ^m ( 0 ..^ N ) ) --> X ) ) |
6 |
2 5
|
bitr4d |
|- ( ( N e. NN0 /\ X e. V ) -> ( F e. ( N -aryF X ) <-> F : { w e. Word X | ( # ` w ) = N } --> X ) ) |