Metamath Proof Explorer


Theorem naryfvalelwrdf

Description: An n-ary (endo)function on a set X expressed as a function over the set of words on X of length n . (Contributed by AV, 4-Jun-2024)

Ref Expression
Assertion naryfvalelwrdf
|- ( ( N e. NN0 /\ X e. V ) -> ( F e. ( N -aryF X ) <-> F : { w e. Word X | ( # ` w ) = N } --> X ) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( 0 ..^ N ) = ( 0 ..^ N )
2 1 naryfvalel
 |-  ( ( N e. NN0 /\ X e. V ) -> ( F e. ( N -aryF X ) <-> F : ( X ^m ( 0 ..^ N ) ) --> X ) )
3 wrdnval
 |-  ( ( X e. V /\ N e. NN0 ) -> { w e. Word X | ( # ` w ) = N } = ( X ^m ( 0 ..^ N ) ) )
4 3 ancoms
 |-  ( ( N e. NN0 /\ X e. V ) -> { w e. Word X | ( # ` w ) = N } = ( X ^m ( 0 ..^ N ) ) )
5 4 feq2d
 |-  ( ( N e. NN0 /\ X e. V ) -> ( F : { w e. Word X | ( # ` w ) = N } --> X <-> F : ( X ^m ( 0 ..^ N ) ) --> X ) )
6 2 5 bitr4d
 |-  ( ( N e. NN0 /\ X e. V ) -> ( F e. ( N -aryF X ) <-> F : { w e. Word X | ( # ` w ) = N } --> X ) )